
LOCKSS System Manual

LOCKSS Program

Oct 30, 2023

LOCKSS 2.0-ALPHA3 SYSTEM MANUAL

1 Introduction 3

2 Installing the LOCKSS System 7

3 Configuring the LOCKSS System 21

4 Running the LOCKSS System 25

5 Using the LOCKSS System 27

6 Appendix 35

i

ii

LOCKSS System Manual

Latest release: 2.0.34-alpha3 (2021-06-04)
First release: 2.0.31-alpha3 (2020-10-29)
System manual last built: Oct 30, 2023

Welcome to the LOCKSS 2.0-alpha3 System Manual.

LOCKSS 2.0-ALPHA3 SYSTEM MANUAL 1

LOCKSS System Manual

2 LOCKSS 2.0-ALPHA3 SYSTEM MANUAL

CHAPTER

ONE

INTRODUCTION

The LOCKSS system is a distributed digital preservation software system developed by the LOCKSS Program at
Stanford University Libraries.

The 2.x series of the LOCKSS system stems from the LAAWS (LOCKSS Architected As Web Services) initiative,
an ambitious modernization project that includes rewriting the classic LOCKSS daemon as a suite of containerized
components. This version, LOCKSS 2.0-alpha3, is the third preview release on the road to LOCKSS 2.0.

1.1 System Prerequisites

1.1.1 Machine

The LOCKSS system runs on a 64-bit Linux host (physical or virtual), with at least 4 cores (8 or more preferable), at
least 8 GB of memory (16 GB or more preferable) and at least 50 GB of disk space (100 GB or more preferable).

1.1.2 Operating System

The LOCKSS system requires a 64-bit Linux host compatible with Systemd, Snap and MicroK8s.

Flavors of Linux we have tested include:

• CentOS 8.2, 8.1, 8.0, 7.8, 7.6.

Tip: CentOS 7 is our recommended OS.

Caution: Snap is not available on CentOS 7.5 or earlier; version 7.6 or later is required.

• Debian 10.6, 10.5, 10.4, 10.3, 10.2, 10.1, 10.0, 9.13, 9.12, 9.9, 9.6, 9.5, 9.4, 9.3, 9.2, 9.1, 9.0.

• Linux Mint 20.0, 19.3, 19.2, 19.1, 19.0, 18.3, 18.2.

Caution: Snap is not available on Linux Mint 18.1 or earlier; version 18.2 or later is required.

• OpenSUSE Leap 15.2, 15.1, 15.0.

• RHEL 8.2, 7.8.

• Ubuntu 20.04 LTS, 19.10, 19.04, 18.10, 18.04 LTS, 17.10, 17.04, 16.10, 16.04 LTS.

3

https://www.lockss.org/
https://library.stanford.edu/
https://www.freedesktop.org/wiki/Software/systemd/
https://snapcraft.io/docs/installing-snapd
https://microk8s.io/
https://www.centos.org/
https://www.debian.org/
https://linuxmint.com/
https://www.opensuse.org/
https://www.redhat.com/
https://ubuntu.com/

LOCKSS System Manual

Tip: LOCKSS 2.0-alpha3 can probably be installed successfully on slightly different versions of the operating systems
above, for instance CentOS 7.7 or Debian 9.11. Additionally, savvy users will likely succeed at installing LOCKSS
2.0-alpha3 on other Linux flavors.

Caution: We do not recommend Arch Linux or Fedora Linux 32, because MicroK8s 1.18.9, the currently available
version in the required 1.18 series, does not seem to work on these platforms as documented. This highlights an
inconvenience of the default Snap-only distribution of MicroK8s that we hope to address in 2.0-alpha4.

1.2 Security Considerations

Important: LOCKSS 2.0-alpha3 is a technology preview, not yet suitable for production environments.

Although the LOCKSS software itself and especially the LOCKSS peer-to-peer protocol remain as secure as ever,
the operating environment for alpha versions of LOCKSS 2.0 is still being hardened. Please read about the security
considerations below that are relevant as of LOCKSS 2.0-alpha3.

1.2.1 Networking

LOCKSS 2.0-alpha3 is the first version of the LAAWS (LOCKSS Architected As Web Services) initiative deployed
in a Kubernetes environment. The Kubernetes networking model is sophisticated and requires complex interactions
with the host operating system’s network and firewall stacks. LOCKSS 2.0-alpha3, for the purposes of demonstrating
basic functionality, requires disabling any of the user-friendly wrappers around iptables, such as firewalld or ufw,
which can interfere with Kubernetes’ iptables manipulations. Better integration with these firewall wrappers will
arrive in LOCKSS 2.0-alpha4.

1.2.2 System Privileges

Likewise, to demonstrate basic functionality, LOCKSS 2.0-alpha3 runs as a dedicated lockss system user with sudo
privileges. This requirement will be relaxed in future versions as we integrate better with the underlying operating
system.

1.3 Upgrading From LOCKSS 2.0-alpha2

1.3.1 Recommended Approach

If you have been using LOCKSS 2.0-alpha2 (or LOCKSS 2.0-alpha1, or the LOCKSS 2.0-alpha technology preview),
we thank you for helping us bring LOCKSS 2.0 closer to fruition through your testing and feedback.

Although there is an upgrade path from LOCKSS 2.0-alpha2, LOCKSS 2.0-alpha3 is organized significantly differently
than prior alpha releases, and we recommend installing LOCKSS 2.0-alpha3 from scratch when possible.

4 Chapter 1. Introduction

https://www.archlinux.org/
https://getfedora.org/

LOCKSS System Manual

1.3.2 Upgrade Path

If you intend to upgrade a LOCKSS 2.0-alpha2 system, please read this section.

Updating the LOCKSS Installer

On the command line, in the lockss-installer directory, type:

git checkout master
git pull

to update to the latest version of lockss-installer from GitHub.

Running the Upgrade Command

On the command line in the updated lockss-installer directory, type:

sudo scripts/upgrade-alpha2-to-alpha3

The script will purge your Docker environment of components, configuration files and images used by the LOCKSS
system.

Installing Snap and MicroK8s

The LOCKSS system’s containers are no longer orchestrated by Docker Swarm and no longer require Docker to run.
The system now uses MicroK8s, a lightweight Kubernetes environment. To install the MicroK8s application package,
you will need to install and use Snap. See Installing Snap and Installing MicroK8s.

Modifying the Environment

In order for LOCKSS 2.0-alpha3 to work properly, you will need to disable frontends to iptables like firewalld or
ufw, and configure MicroK8s to use DNS in a way that avoids loopback addresses. See Disabling Packet Filters and
Configuring DNS for details.

Reconfiguring the System

Upon successful completion, you will prompted to run scripts/configure-lockss. Be advised that the configuration
process will prompt you for the PostgreSQL database password.

Starting LOCKSS

Once configuration is complete you can run lockss as usual with scripts/start-lockss.

1.3. Upgrading From LOCKSS 2.0-alpha2 5

LOCKSS System Manual

6 Chapter 1. Introduction

CHAPTER

TWO

INSTALLING THE LOCKSS SYSTEM

This section describes how to install the LOCKSS system.

2.1 Creating the lockss User

The LOCKSS system runs under a system user named lockss, which is in a group named lockss, and which is
capable of using sudo. The lockss user’s password will be needed at various points during installation, both by
explicit invocations of sudo, and in some cases by microk8s commands.

Important: See the Security Considerations section for more about this short-term requirement.

2.1.1 Creating the User on CentOS, OpenSUSE and RHEL

Type these commands:

sudo useradd --system --user-group --groups=wheel --create-home --shell=/bin/bash lockss

sudo passwd lockss

By default on CentOS, OpenSUSE and RHEL, sudo privileges and membership in the wheel group are equated.
Adjust the above commands accordingly if your system has sudo configured differently.

2.1.2 Creating the User on Debian, Linux Mint and Ubuntu

Type these commands:

sudo useradd --system --user-group --groups=sudo --create-home --shell=/bin/bash lockss

sudo passwd lockss

By default on Debian, Linux Mint and Ubuntu, sudo privileges and membership in the sudo group are equated.
Adjust the above commands accordingly if your system has sudo configured differently.

7

LOCKSS System Manual

2.1.3 Obtaining a shell running as lockss

All commands shown in this document except those that explicitly invoke sudo should be issued from a shell running
as the lockss user. Depending on your preference, you may login as lockss, or switch to the lockss user with this
command:

sudo -i -u lockss

2.2 Disabling Packet Filters

Version 2.0-alpha3 of the LOCKSS system requires, in the short term, disabling any of the user-friendly wrappers
around iptables, such as firewalld or ufw, which can interfere with Kubernetes’ iptables manipulations.

Important: See the Security Considerations section for more about this short-term requirement.

2.2.1 Disabling firewalld

By default, CentOS, OpenSUSE and RHEL come with firewalld. You can check whether firewalld is running
with:

sudo firewall-cmd --state

If it is running, stop and disable it with this command:

sudo systemctl disable --now firewalld

2.2.2 Disabling ufw

By default, Ubuntu comes with ufw. You can chech whether that ufw is running with:

sudo ufw status

If it is running, stop and disable it with this command:

sudo systemctl disable --now ufw

2.3 Installing Git

Git is a version control system, used to interact with code repositories.

The LOCKSS Installer is available from GitHub, and you will need a Git client to download it.

8 Chapter 2. Installing the LOCKSS System

https://git-scm.com/
https://github.com

LOCKSS System Manual

2.3.1 Checking for Git

Your operating system may already be equipped with a Git client. Type:

git --version

If the output is a version number, for example:

git version 2.28.0

then Git is already installed and you do not need to take further action.

If you see an error message similar to the following:

bash: git: command not found

then you need to install Git.

2.3.2 Installing Git

On many flavors of Linux, you can install Git with the built-in package manager:

• CentOS 7: see Installing Git with Yum

• CentOS 8: see Installing Git with Dnf

• Debian: see Installing Git with Apt

• Linux Mint: see Installing Git with Apt

• OpenSUSE: see Installing Git with Zypper

• RHEL 7: see Installing Git with Yum

• RHEL 8: see Installing Git with Dnf

• Ubuntu: see Installing Git with Apt

Installing Git with Apt

Apt is the package manager on Debian, Linux Mint and Ubuntu.

Use these Apt commands to install Git:

sudo apt update

sudo apt install git

2.3. Installing Git 9

LOCKSS System Manual

Installing Git with Dnf

Dnf is the package manager on CentOS 8 and RHEL 8.

Use this Dnf command to install Git:

sudo dnf install git

Installing Git with Yum

Yum is the package manager on CentOS 7 and RHEL 7.

Use this Yum commands to install Git:

sudo yum install git

Installing Git with Zypper

Zypper is the package manager on OpenSUSE.

Use these Zypper commands to install Git:

sudo zypper refresh

sudo zypper install git

2.4 Downloading the LOCKSS Installer

You can download the LOCKSS Installer from GitHub using a Git command, as the lockss user:

git clone https://github.com/lockss/lockss-installer

All the remaining instructions assume that the current working directory is lockss-installer; cd to it now:

cd lockss-installer

2.5 Installing Snap

Snap is a Linux application package manager maintained by Canonical, makers of Ubuntu.

Snap is needed to install MicroK8s (a lightweight Kubernetes environment used by the LOCKSS system), which is
also maintained by Canonical (and therefore only installed via Snap).

More complete instructions can be found at “Installing snapd” on Snapcraft, Snap’s home Web site, but we also provide
some high level installation instructions below.

10 Chapter 2. Installing the LOCKSS System

https://snapcraft.io/
https://canonical.com/
https://ubuntu.com/
https://microk8s.io/
https://kubernetes.io/
https://snapcraft.io/docs/installing-snapd
https://snapcraft.io/

LOCKSS System Manual

2.5.1 Checking for Snap

Some Linux flavors come with Snap pre-installed, for instance Ubuntu. To determine if your operating system is
already be equipped with Snap, type:

snap version

If you see something similar to the following:

snap 2.46.1-1
snapd 2.46.1-1
series 16
kernel 5.8.13

then Snap is already installed and you do not need to take further action.

If you see an error message similar to the following:

bash: snap: command not found

then you need to install Snap.

2.5.2 Installing Snap

On many flavors of Linux, you can install Snap with the built-in package manager:

• CentOS 7: see Installing Snap with Yum

• CentOS 8: see Installing Snap with Dnf

• Debian: see Installing Snap with Apt

• Linux Mint: see Installing Snap with Apt

• OpenSUSE: see Installing Snap with Zypper

• RHEL 7: see Installing Snap with Yum

• RHEL 8: see Installing Snap with Dnf

• Ubuntu: see Installing Snap with Apt

Installing Snap with Apt

Apt is the package manager on Debian, Linux Mint and Ubuntu.

Preliminary Steps for Linux Mint 20

Before you can install Snap on Linux Mint 20, you first need to type this command:

sudo rm /etc/apt/preferences.d/nosnap.pref

This step is not needed for Linux Mint 19.

Use these Apt commands to install Snap:

2.5. Installing Snap 11

LOCKSS System Manual

sudo apt update

sudo apt install snapd

You can then proceed to the next step, Enabling Classic Confinement.

Installing Snap with Dnf

Dnf is the package manager on CentOS 8 and RHEL 8.

Preliminary Steps for CentOS 8

Before you can install Snap on CentOS 8, you first need to type this Dnf command:

sudo dnf install epel-release

Preliminary Steps for RHEL 8

Before you can install Snap on RHEL 8, you first need to type this Dnf command:

sudo dnf install https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm

Use this Dnf command to install Snap:

sudo dnf install snapd

You can then proceed to the next step, Enabling Classic Confinement.

Installing Snap with Yum

Yum is the package manager on CentOS 7 and RHEL 7.

Preliminary Steps for CentOS 7

Before you can install Snap on CentOS 7, you first need to type this Yum command:

sudo yum install epel-release

Preliminary Steps for RHEL 7

Before you can install Snap on RHEL 7, you first need to type these commands:

sudo rpm -ivh https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm

sudo subscription-manager repos --enable "rhel-*-optional-rpms" --enable "rhel-*-extras-
→˓rpms"

Use this Yum command to install Snap:

12 Chapter 2. Installing the LOCKSS System

LOCKSS System Manual

sudo yum install snapd

You can then proceed to the next step, Enabling Classic Confinement.

References

• Installing snap on CentOS

• Installing snap on Red Hat Enterprise Linux (RHEL)

Installing Snap with Zypper

Zypper is the package manager on OpenSUSE.

First, use one of these Zypper commands (note the slight variation based on the exact version of your system):

For OpenSUSE Leap 15.2:
sudo zypper addrepo --refresh https://download.opensuse.org/repositories/system:/snappy/
→˓openSUSE_Leap_15.2 snappy

For OpenSUSE Leap 15.1:
sudo zypper addrepo --refresh https://download.opensuse.org/repositories/system:/snappy/
→˓openSUSE_Leap_15.1 snappy

For OpenSUSE Leap 15.0:
sudo zypper addrepo --refresh https://download.opensuse.org/repositories/system:/snappy/
→˓openSUSE_Leap_15.0 snappy

Then use these Zypper commands to install Snap:

sudo zypper --gpg-auto-import-keys refresh

sudo zypper dup --from snappy

sudo zypper install snapd

You can then proceed to the next step, Enabling Classic Confinement.

References

• Installing snap on openSUSE

2.5.3 Enabling Classic Confinement

MicroK8s uses Snap’s so-called classic confinement model, which expects a top-level directory named /snap on your
system. Nowadays this directory is located at /var/lib/snapd/snap. In order for Snap to install MicroK8s correctly,
you need to create a symbolic link from /snap to /var/lib/snapd/snap with this command:

sudo ln -s /var/lib/snapd/snap /snap

(On some systems like Debian, /snap may already exist.)

2.5. Installing Snap 13

https://snapcraft.io/docs/installing-snap-on-centos
https://snapcraft.io/docs/installing-snap-on-red-hat
https://snapcraft.io/docs/installing-snap-on-opensuse

LOCKSS System Manual

2.5.4 Enabling Snap

You can then enable Snap on your system with the following command:

sudo systemctl enable --now snapd.socket

2.5.5 Logging Out and Back In

Log out and back in again (or restart your system) to ensure Snap’s paths are updated correctly.

2.5.6 Verifying Snap

Snap offers a way to verify that things work correctly, by installing and running the hello-world Snap package. Type
this Snap command:

sudo snap install hello-world

and then verify that this command:

hello-world

outputs the greeting Hello World!.

2.5.7 Configuring Snap Updates

The snap daemon will automatically update any installed Snap packages and by default it will check every four hours
for updates.

For stability, you should adjust the frequency at which Snap checks and updates your Snap packages.

To adjust your update schedule to a year (the maximum allowed), use a refresh hold:

sudo snap set system refresh.hold="$(date --date='364 days' +%Y-%m-%dT%H:%M:%S%:z)"

2.6 Installing MicroK8s

MicroK8s is a lightweight Kubernetes environment. (Kubernetes is a system for managing and deploying containerized
applications like the LOCKSS system.) This page will walk you through the initial installation of MicroK8s.

The LOCKSS system requires MicroK8s 1.18.

All the commands on this page should be run as the lockss user.

14 Chapter 2. Installing the LOCKSS System

https://microk8s.io/
https://kubernetes.io/

LOCKSS System Manual

2.6.1 Installing MicroK8s

To install the MicroK8s Snap package, run this Snap command:

sudo snap install microk8s --classic --channel=1.18/stable

Troubleshooting

In some flavors of Linux (including Debian 9), sometimes the above command fails. Try running the following com-
mand first:

sudo snap install core

then retry installing the MicroK8s Snap package.

2.6.2 Joining the microk8s Group

MicroK8s creates a group to enable usage of commands which require admin privilege. To add your current user to
the group and gain access to the .kube caching directory, run the following two commands:

sudo usermod -G microk8s -a lockss

2.6.3 Logging Out and Back In

Log out and back in again (or restart your system) for the group update to take place.

After you log back in as lockss, try:

microk8s --help

to check that MicroK8s is on your PATH. You should see a help message similar to the following:

Available subcommands are:
add-node
cilium
config

...

If you see an error message instead (such as bash: microk8s: command not found), you need to ensure /snap/
bin is on the PATH.

2.6.4 Generating the Kubernetes Configuration

Generate the Kubernetes configuration file from MicroK8s using these commands:

mkdir -p ~/.kube

sudo chown -f -R lockss ~/.kube

microk8s config --use-loopback > ~/.kube/config

2.6. Installing MicroK8s 15

LOCKSS System Manual

2.6.5 Starting MicroK8s

Type the following command which will start MicroK8s and wait until it is fully ready.

microk8s status --wait-ready

It will then display the status of various MicroK8s subsystems:

microk8s is running
addons:
dashboard: disabled
dns: disabled
...

REFERENCES

Additional Documentation

• Using MicroK8s

MicroK8s References

• Complete MicroK8s Documentation

• MicroK8s Commands

• Troubleshooting Guide

Kubectl References

• Kubectl commands

• Kubectl Cheatsheet

2.7 Configuring DNS

After MicroK8s is up and running, adjustments need to be made to DNS processing in MicroK8s, which is handled
by a MicroK8s component named CoreDNS. By default, CoreDNS is configured to use Google’s nameservers; this is
often undesirable in an institutional network, and unworkable for LOCKSS hosts with no public DNS records.

This section will reconfigure CoreDNS to use the same name servers configured for normal use on the host, i.e. those
specified in /etc/resolv.conf. This can be done automatically as long as /etc/resolv.conf does not contain
any loopback adresses; if it does, you will need to enter IP addresses of upstream name servers.

16 Chapter 2. Installing the LOCKSS System

https://microk8s.io/docs
https://microk8s.io/docs/commands
https://microk8s.io/docs/troubleshooting
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands
https://kubernetes.io/docs/reference/kubectl/cheatsheet/

LOCKSS System Manual

2.7.1 Configuring CoreDNS

From the lockss-installer directory and as the lockss user, run the following script:

scripts/configure-dns

You may be prompted for the lockss password for sudo, and if the script detects that /etc/resolv.conf contains
loopback addresses, you will be prompted for a semicolon-separated list of IP addresses of upstream DNS servers
that MicroK8s should use. Enter up to 3 non-loopback addresses from /etc/resolv.conf.

Note: Please note that IPv6 addresses do not currently work if entered at this prompt.

Example 1

Successful output from a run not requiring IP addresses of upstream DNS servers will look something like the following:

Enabling DNS
Applying manifest
serviceaccount/coredns created
configmap/coredns created
deployment.apps/coredns created
service/kube-dns created
clusterrole.rbac.authorization.k8s.io/coredns created
clusterrolebinding.rbac.authorization.k8s.io/coredns created
Restarting kubelet
DNS is enabled
Updating CoreDNS ConfigMap to use /etc/resolv.conf...
configmap/coredns configured
--
Successfully changed CoreDNS ConfigMap

forward . /etc/resolv.conf
--

Example 2

Successful output from a run requiring IP addresses of upstream DNS servers will look something like the following:

Enabling DNS
Applying manifest
serviceaccount/coredns created
configmap/coredns created
deployment.apps/coredns created
service/kube-dns created
clusterrole.rbac.authorization.k8s.io/coredns created
clusterrolebinding.rbac.authorization.k8s.io/coredns created
Restarting kubelet
DNS is enabled
The /etc/resolv.conf file in your system contains a loopback address.
CoreDNS does not allow a loopback address to be assigned to pods.
Please enter a list of ip addresses of upstream dns resolvers.

(continues on next page)

2.7. Configuring DNS 17

LOCKSS System Manual

(continued from previous page)

IP address(es) for dns lookup, separated by ';': [8.8.8.8;8.8.4.4] 208.67.222.222;8.8.8.8
Updating CoreDNS ConfigMap to use 208.67.222.222 8.8.8.8...
configmap/coredns configured
--
Successfully changed CoreDNS ConfigMap

forward . 208.67.222.222 8.8.8.8
--

2.7.2 Verifying CoreDNS

If you type:

microk8s kubectl get all --all-namespaces

you should see output similar to the following:

NAMESPACE NAME READY STATUS RESTARTS AGE
kube-system pod/coredns-588fd544bf-xq8ck 1/1 Running 0 5h51m

NAMESPACE NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) ␣
→˓ AGE
default service/kubernetes ClusterIP 10.152.183.1 <none> 443/TCP ␣
→˓ 23h
kube-system service/kube-dns ClusterIP 10.152.183.10 <none> 53/UDP,53/
→˓TCP,9153/TCP 5h51m

NAMESPACE NAME READY UP-TO-DATE AVAILABLE AGE
kube-system deployment.apps/coredns 1/1 1 1 5h51m

NAMESPACE NAME DESIRED CURRENT READY AGE
kube-system replicaset.apps/coredns-588fd544bf 1 1 1 5h51m

consisting of sections for different kinds of resources: pods, services, deployments, replica sets, etc. The pod containing
coredns in the name (here pod/coredns-588fd544bf-xq8ck) should be in Running status and display 1/1 (one
of one) ready.

2.8 Checking the System

After installing the LOCKSS system, you can confirm the status of installed components by running:

sudo scripts/check-sys

in the lockss-installer directory.

The script will do its best to check for any missing elements and permissions needed to run the LOCKSS cluster on the
host machine:

• Check for Snap

• Check for MicroK8s

• Check for a user lockss.

18 Chapter 2. Installing the LOCKSS System

LOCKSS System Manual

• Check user lockss has appropriate group memberships and permissions.

2.8. Checking the System 19

LOCKSS System Manual

20 Chapter 2. Installing the LOCKSS System

CHAPTER

THREE

CONFIGURING THE LOCKSS SYSTEM

After installing the LOCKSS system, configure the system with the configure script:

scripts/configure-lockss

(If you have experience with classic LOCKSS daemon version 1.x, this is the equivalent of hostconfig.)

When run the first time, some of the questions asked by the script will have a suggested or default value, displayed in
square brackets; hit Enter to accept the suggested value, or type the correct value and hit Enter. Any subsequent runs
will use the previous values as the default value; review and hit Enter to leave unchanged. Password prompts will not
display the previous value but can still be left unchanged with Enter.

The questions are:

1. Fully qualified hostname (FQDN) of this machine: Enter the machine’s hostname (e.g.
locksstest.myuniversity.edu).

2. IP address of this machine: The publicly routable IP address of the machine, or if it is not publicly
routable but will be accessible via network address translation (NAT), its IP address on the internal network.

3. Is this machine behind NAT?: Enter Y if the machine is not publicly routable but will be accessible via
network address translation (NAT), or N otherwise.

1. External IP address for NAT: If you answered Y to the previous question, enter the publicly routable
IP address of the NAT router.

4. Initial subnet for admin UI access: Enter a semicolon-separated list of subnets in CIDR or mask no-
tation that should initially have access to the Web user interfaces of the system. The access list can be modified
later via the UI.

5. LOCKSS subnet for container access: This is calculated from the MicroK8s node and should not need
to be modified in a standard installation.

6. LCAP V3 protocol port: Enter the port on the publicly routable IP address that will be used to receive LCAP
(LOCKSS polling and repair) traffic. Historically, most LOCKSS nodes use 9729.

7. PROXY port: Port for the LOCKSS content proxy. Accept the default – it can be changed later if necessary.

8. Mail relay for this machine: Hostname of this machine’s outgoing mail server.

9. Does mail relay <mailhost> need user & password: Enter Y if the outgoing mail server requires pass-
word authentication, N otherwise.

1. User for <mailhost>: If you answered Y to the outgoing mail server password authentication question,
enter the username for the mail server.

2. Password for <mailuser>@<mailhost>: Enter the password for the given username.

3. Password for <mailuser>@<mailhost> (again): Re-enter the mail server password (if the two
passwords do not match, the password will be asked again).

21

LOCKSS System Manual

10. E-mail address for administrator: Enter the e-mail address of the person or team who will administer
the LOCKSS system on this machine.

11. Configuration URL: Enter the URL of the LOCKSS network configuration file. If you are not running your
own LOCKSS network, use http://props.lockss.org:8001/demo/lockss.xml, the configuration file for
a demo network set up for LOCKSS 2.0 pre-release testing.

12. Configuration proxy (host:port): If a proxy server is required to reach the configuration server, enter
its host:port here, otherwise leave this blank.

13. Preservation group(s): Enter a semicolon-separated list of preservation network identifiers. If you are not
joining an existing network or running your own, enter demo, the network identifier for the demo network set up
for LOCKSS 2.0 pre-release testing.

14. Content data storage directory: Enter the full path of a directory to use as the root of the main storage
area of the LOCKSS system. This is where preserved content will be stored, along with several databases; it is
the analog of /cache0 in the classic LOCKSS system.

15. Use additional directories for content storage?: If you want to use more than one filesystem to
store preserved content answer Y.

1. Enter path to additional content storage directory <n> (q to quit): If you entered Y to Use
additional directories you will be prompted repeatedly for those paths; enter them one at a time, then enter
q when done.

16. Service logs directory: Defaults to the content data storage directory; enter a different path if you want
to put the logs elsewhere. In the classic LOCKSS system this was /var/log/lockss, but now there will be a
set of subdirectories, one for each component service.

17. Temporary storage directory: Defaults to the content data storage directory. If that directory is remote
(e.g. NFS), performance can be improved by supplying a local disk directory here. Do not use a RAM-based
tmpfs; in some circumstances a substantial amount of temporary space (tens of GB) may be needed.

18. User name for web UI administration: Enter a username for the primary administrative user in the
LOCKSS system’s Web user interfaces.

19. Password for web UI administration user <uiuser>: Enter a password for the primary administra-
tive user.

20. Password for web UI administration user <uiuser> (again): Re-enter the password for the pri-
mary administrative user (if the two passwords do not match, the password will be asked again).

21. Use LOCKSS Metadata Query Service?: Enter Y if you want the metadata query service to be run, other-
wise N.

22. Use LOCKSS Metadata Extractor Service?: Enter Y if you want the metadata extraction service to be
run, otherwise N.

23. Use LOCKSS PostgreSQL DB Service?:

• Enter Y to use the embedded PostgreSQL database. This is recommended in most cases.

1. Password for PostgreSQL database: Enter a password for the embedded PostgreSQL database.

2. Password for PostgreSQL database (again): Re-enter the password for the PostgreSQL database
(if the two passwords do not match, the password will be asked again).

• Enter N if you wish to use your own PostgreSQL database. You will be queried for the details of your PostgreSQL
service.

1. Fully qualified hostname (FQDN) of PostgreSQL host: Enter the hostname of your Post-
greSQL database (e.g. mypgsql.myuniversity.edu).

22 Chapter 3. Configuring the LOCKSS System

LOCKSS System Manual

2. Port used by PostgreSQL host: Enter the port where your running PostgreSQL database can be
reached.

3. Login name for PostgreSQL service: Enter the user name for your PostgreSQL database. The de-
fault is LOCKSS.

4. Schema for PostgreSQL service: Enter the schema name to be used by the LOCKSS system. The
default is LOCKSS.

5. Database name prefix for PostgreSQL service: Prefix to use for any LOCKSS databases. The
default is Lockss (note the uppercase/lowercase).

6. Password for PostgreSQL database: Enter the password for your PostgreSQL database.

7. Password for PostgreSQL database (again): Re-enter the password for your PostgreSQL
database (if the two passwords do not match, the password will be asked again).

24. Use LOCKSS Solr Service?:

• Enter Y to use the embedded Solr server. This is recommended in most cases.

• Enter N to use your own Solr server.

1. Fully qualified hostname (FQDN) of Solr host: Enter the hostname of your Solr database
server (e.g. mysolr.myuniversity.edu).

2. Port used by Solr host: Enter the port where your running Solr database server can be reached.

3. Solr core repo name: Enter name of the Solr core for the LOCKSS repository. The default is
lockss-repo.

25. Use LOCKSS PyWb Service?: Enter Y to use PyWb for content replay; enter N and you will be offered the
option to use OpenWayback instead.

26. Use LOCKSS OpenWayback Service?: Enter Y to use OpenWayback for content replay (only if you did not
opt for PyWb).

1. Okay to turn off authentication for read-only requests for LOCKSS Repository
Service?: OpenWayback currently does not supply user credentials when reading content from the
LOCKSS repository, so the repository must be configured to respond to unauthenticated read requests. Enter Y
to accept this, otherwise OpenWayback will not be enabled.

27. OK to store this configuration: Enter Y if the configuration values are to your liking, otherwise N to
make edits.

If you enter Y, some checks will be run, necessary directories will be created, and you will be prompted to run scripts/
start-lockss to start the configured system.

23

LOCKSS System Manual

24 Chapter 3. Configuring the LOCKSS System

CHAPTER

FOUR

RUNNING THE LOCKSS SYSTEM

4.1 Starting the LOCKSS System

Run scripts/start-lockss. This script will call in turn:

• scripts/generate-lockss: This script takes your configuration data and turns it into a set of configuration
files containing the right values.

• scripts/assemble-lockss: This script puts the configuration files and puts them in the right places, and
ensures that all storage volumes are ready for use (creating them if necessary).

• scripts/deploy-lockss: This script deploys your LOCKSS stack by invoking Kubernetes.

4.2 Shutting down the LOCKSS System

Run scripts/shutdown-lockss.

4.3 Restarting a Running LOCKSS System

Run scripts/restart-lockss.

4.4 Removing a Configured LOCKSS System

To remove all configurations, volumes and networks installed by the LOCKSS system, run scripts/
uninstall-lockss. This will not remove files from the persistent store.

25

LOCKSS System Manual

26 Chapter 4. Running the LOCKSS System

CHAPTER

FIVE

USING THE LOCKSS SYSTEM

This section describes how to use the LOCKSS system.

5.1 Using the LOCKSS Configuration Service

Note: This page is under construction.

5.1.1 Accessing the Web User Interface

If you are already connected to the Web user interface (UI) of another component of the LOCKSS System, click Config
Service in the top-left menu.

Alternatively, if your primary hostname is <HOST>, you can use your browser to connect to the LOCKSS Configuration
Service Web user interface (UI) at http://<HOST>:24621.

Enter your Web UI username and password to login if prompted.

5.1.2 Adding Archival Units

To add AUs to the system for preservation:

1. In the top-right menu, click Journal Configuration.

2. In the center menu, click Add AUs.

3. Select one or more collections of AUs by selecting the checkbox next to the appropriate collection.

4. Click the Select AUs button. It may take a bit of time (60+ seconds) for the next screen to appear, while the list
of AUs is built.

5. Select one or more AUs from the AU list. You may click Select All if you would like to select all AUs. If you
choose to use select all AUs, please note that the next step may take some time to load.

6. Click the Add Selected AUs button. The time it takes for the page to refresh depends on the number of AUs
added. Give the LOCKSS system some time to load the AUs and reload the page before moving on.

7. A screen will show a list of added AUs. Crawling of these new AUs will start automatically – no further action
is necessary unless prompted by a footnote next to an AU’s name.

27

LOCKSS System Manual

5.1.3 Configuring a Crawl Proxy

If Web crawls must be routed through a Web proxy:

1. In the top-right menu, click Content Access Options.

2. In the center menu, click Proxy Client Options.

3. Select the Proxy crawls checkbox.

4. Enter the hostname and port of the Web proxy in the HTTP Proxy host and Port text areas, respectively.

5. Click the Update Proxy Client button.

5.1.4 Managing Access to the Web User Interfaces

This section is under construction.

5.2 Using the LOCKSS Crawler Service

Note: This page is under construction.

5.2.1 Accessing the Web User Interface

Note: Currently the crawler service is run as part of the poller service.

If you are already connected to the Web user interface (UI) of another component of the LOCKSS System, click Crawler
Service in the top-left menu.

Alternatively, if your primary hostname is <HOST>, you can use your browser to connect to the LOCKSS Configuration
Service Web user interface (UI) at http://<HOST>:24631.

Enter your Web UI username and password to login if prompted.

5.2.2 Monitoring Crawl Status in the System

The Crawl status of all configured AUs is available in the Archival Unit table

1. In the top-right menu, click Daemon Status.

2. Open the control in the middle of the screen that says Overview and select Archival Units:guilabel: from the
drop down menu.

• If prompted, enter your Username and Password again.

• It will take a bit of time for the next screen to appear while the AU list is being built.

3. The Archival Units screen lists statistics for each configured AU

• the Last Successful Crawl column provides a timestamp of the most recent sucessful crawl.

• the Last Crawl Start column provides a timestamp of the last attempted crawl.

• the Last Crawl Result column provides the exit status of the last attempted crawl.

28 Chapter 5. Using the LOCKSS System

LOCKSS System Manual

5.2.3 Causing an Archival Unit to Crawl

Archival units (AUs) that have been added to the system for preservation crawl periodically, but you can cause an AU
to crawl on demand:

1. In the top-right menu, click Debug Panel.

2. Select an AU in the AU Actions: select AU drop-down list.

3. Click the Start Crawl button.

4. If the AU has crawled recently, you will be prompted to confirm that you wish to override the usual recrawl
interval by clicking on the Force Start Crawl button.

5.2.4 Crawl Status Screen

To inspect the state of crawls, access the Crawl Status screen:

1. In the top-right menu, click Daemon Status.

2. In the center drop-down list, select Crawl Status. Alternatively, in the center overview, click on the second line,
which says “N active crawls”.

Top-Level Crawl Information

The top left of the Crawl Status table contains the number of active, successful or failed crawls, and a countdown until
the next time the system will look at the AUs being preserved and pick some that are ready to crawl or recrawl.

Crawl Status Entry

Each line in the Crawl Status table contains:

• The name of the AU

• The type of crawl

• The start time of the crawl

• The duration of a finished or in-progress crawl

• The status of the crawl

• The number of bytes fetched over the network as part of the crawl

• The number of URLs fetched as part of the crawl

• The number of URLs parsed for more links

• The number of URLs remaining to be fetched as part of this crawl

• The number of URLs encountered as part of this crawl but excluded from being fetched

• The number of URLs fetched as part of the crawl, that received an HTTP Not Modified response

• The number of URLs that caused errors as part of this crawl

• The number of different content types encountered as part of the crawl

Most of these values can be clicked to see a list of the corresponding objects.

5.2. Using the LOCKSS Crawler Service 29

LOCKSS System Manual

5.3 Using the LOCKSS Poller Service

Note: This page is under construction.

5.3.1 Accessing the Web User Interface

If you are already connected to the Web user interface (UI) of another component of the LOCKSS System, click Poller
Service in the top-left menu.

Alternatively, if your primary hostname is <HOST>, you can use your browser to connect to the LOCKSS Configuration
Service Web user interface (UI) at http://<HOST>:24631.

Enter your Web UI username and password to login if prompted.

5.3.2 Requesting Polls

This section is under construction.

5.3.3 Monitoring Polling and Voting

This section is under construction.

5.4 Using the LOCKSS Metadata Extraction Service

Note: This page is under construction.

5.4.1 Accessing the Web User Interface

If you are already connected to the Web user interface (UI) of another component of the LOCKSS System, click
Metadata Extraction Service in the top-left menu.

Alternatively, if your primary hostname is <HOST>, you can use your browser to connect to the LOCKSS Configuration
Service Web user interface (UI) at http://<HOST>:24641.

Enter your Web UI username and password to login if prompted.

5.4.2 Requesting Metadata Extraction

This section is under construction.

30 Chapter 5. Using the LOCKSS System

LOCKSS System Manual

5.5 Using the LOCKSS Metadata Service

Note: This page is under construction.

5.5.1 Accessing the Web User Interface

If you are already connected to the Web user interface (UI) of another component of the LOCKSS System, click
Metadata Service in the top-left menu.

Alternatively, if your primary hostname is <HOST>, you can use your browser to connect to the LOCKSS Configuration
Service Web user interface (UI) at http://<HOST>:24651.

Enter your Web UI username and password to login if prompted.

5.5.2 Requesting Metadata Information

This section is under construction.

5.6 Replaying Web Content with Pywb

5.6.1 Accessing the Pywb User Interface

Given that your primary hostname is samp:{<HOST>}, you can use your browser to connect to the Pywb user interface
(UI) at http://<HOST>:8080.

5.6.2 Replaying a URL

To view a URL from Pywb:

1. The Pywb screen provides a list of links to available collections. Click on the top-most collection which should
be /lockss.

2. Enter the URL you want to replay in the URL search box.

3. Click the Search button.

4. Replay the most recent URL by clicking on the topmost entry of the third column.

5.6.3 Finding a URL From an AU to Replay

There are multiple ways to discover URLs belonging to an AU in the Configuration Service UI:

1. Obtaining a URL by clicking on “pages fetched” inside of crawl status

• In the top-right menu, click Daemon Status.

• Open the control in the middle of the screen that says Overview and select Crawl Status from the drop down
menu.

• Picking an AU from the active crawls, click on the number associated with Pages Fetched to bring up a list
of URLs that have been crawled.

5.5. Using the LOCKSS Metadata Service 31

LOCKSS System Manual

• Copy one of the URLs and paste it in the Pywb interface as described previously.

2. Obtaining a Substance URL

• In the top-right menu, click Daemon Status.

• Open the control in the middle of the screen that says Overview and select Archival Units from the drop
down menu. If prompted, enter your Username and Password again. It will take a bit of time for the next
screen to appear while the AU list is being built.

• Select an AU by clicking on the AU title in the first column.

• Open the Substance URLs link

• Copy one of the URLs and paste it in the Pywb interface as described previously.

5.7 Replaying Web Content with OpenWayback

5.7.1 Accessing the OpenWayback User Interface

Given that your primary hostname is samp:{<HOST>}, you can use your browser to connect to the Pywb user interface
(UI) at http://<HOST>:8080/wayback.

5.7.2 Replaying a URL

To view a URL from OpenWayback:

1. Enter the URL you want to replay in the URL search box.

2. Click the Search button.

3. Select the Year* or leave as :guilabel:`All

4. Click Take Me Back.

5.7.3 Finding a URL From an AU to Replay

There are multiple ways to discover URLs belonging to an AU in the Configuration Service UI:

1. Obtaining a URL by clicking on “pages fetched” inside of crawl status

• In the top-right menu, click Daemon Status.

• Open the control in the middle of the screen that says Overview and select Crawl Status from the drop down
menu.

• Picking an AU from the active crawls, click on the number associated with Pages Fetched to bring up a list
of URLs that have been crawled.

• Copy one of the URLs and paste it in the OpenWayback interface as described previously.

2. Obtaining a Substance URL

• In the top-right menu, click Daemon Status.

• Open the control in the middle of the screen that says Overview and select Archival Units from the drop
down menu. If prompted, enter your Username and Password again. It will take a bit of time for the next
screen to appear while the AU list is being built.

• Select an AU by clicking on the AU title in the first column.

32 Chapter 5. Using the LOCKSS System

LOCKSS System Manual

• Open the Substance URLs link

• Copy one of the URLs and paste it in the OpenWayback interface as described previously.

5.7. Replaying Web Content with OpenWayback 33

LOCKSS System Manual

34 Chapter 5. Using the LOCKSS System

CHAPTER

SIX

APPENDIX

This appendix contains additional pages of information about the LOCKSS system.

6.1 Release Notes

6.1.1 LOCKSS 2.0.34-alpha3

Released: 2021-06-04
Also known as: LOCKSS 2.0-alpha3d

LOCKSS 2.0.34-alpha3 (also known as LOCKSS 2.0-alpha3d) is a bug fix release and the altest version of the LOCKSS
2.0-alpha3 system. It addresses a bug in the LOCKSS Installer.

Release Notes

• Fix previously deleted or renamed files.

Component Versions

LOCKSS 2.0.34-alpha3 consists of a configurable set of the following components:

• LOCKSS Installer version 2.0.34-alpha3

• LOCKSS Repository Service version 2.0.10.1

• LOCKSS Configuration Service version 2.0.4.1

• LOCKSS Poller Service version 2.0.2.1

• LOCKSS Metadata Extraction Service version 2.0.3.1

• LOCKSS Metadata Service version 2.0.2.1

• PostgreSQL version 9.6.12

• Apache Solr version 7.2.1

• Pywb version 2.4.2 (custom version 2.4.2-1)

• OpenWayback version 2.4.0 (custom version 2.4.0-1)

35

https://github.com/lockss/lockss-installer
https://github.com/lockss/laaws-repository-service
https://github.com/lockss/laaws-configservice
https://github.com/lockss/laaws-poller
https://github.com/lockss/laaws-metadataextractor
https://github.com/lockss/laaws-metadataservice
https://www.postgresql.org/
https://lucene.apache.org/solr/
https://github.com/webrecorder/pywb
https://github.com/iipc/openwayback

LOCKSS System Manual

6.1.2 LOCKSS 2.0.33-alpha3

Released: 2021-01-29
Also known as: LOCKSS 2.0-alpha3c

LOCKSS 2.0.33-alpha3 (also known as LOCKSS 2.0-alpha3c) is a security release of the LOCKSS 2.0-alpha3 system.
It addresses a vulnerability in a dependent code library.

Release Notes

• Use components patched to use Jackson-Databind 2.9.10.8 (CVE-2021-20190).

Component Versions

LOCKSS 2.0.33-alpha3 consists of a configurable set of the following components:

• LOCKSS Installer version 2.0.33-alpha3

• LOCKSS Repository Service version 2.0.10.1

• LOCKSS Configuration Service version 2.0.4.1

• LOCKSS Poller Service version 2.0.2.1

• LOCKSS Metadata Extraction Service version 2.0.3.1

• LOCKSS Metadata Service version 2.0.2.1

• PostgreSQL version 9.6.12

• Apache Solr version 7.2.1

• Pywb version 2.4.2 (custom version 2.4.2-1)

• OpenWayback version 2.4.0 (custom version 2.4.0-1)

6.1.3 LOCKSS 2.0.32-alpha3

Released: 2020-11-09
Also known as: LOCKSS 2.0-alpha3b

LOCKSS 2.0.32-alpha3 (also known as LOCKSS 2.0-alpha3b) is a bug fix release of the LOCKSS 2.0-alpha3 system.
It addresses a bug in the LOCKSS Installer.

36 Chapter 6. Appendix

https://github.com/lockss/lockss-installer
https://github.com/lockss/laaws-repository-service
https://github.com/lockss/laaws-configservice
https://github.com/lockss/laaws-poller
https://github.com/lockss/laaws-metadataextractor
https://github.com/lockss/laaws-metadataservice
https://www.postgresql.org/
https://lucene.apache.org/solr/
https://github.com/webrecorder/pywb
https://github.com/iipc/openwayback

LOCKSS System Manual

Release Notes

• Fix for broken multi-volume substitutions.

Component Versions

LOCKSS 2.0.32-alpha3 consists of a configurable set of the following components:

• LOCKSS Installer version 2.0.32-alpha3

• LOCKSS Repository Service version 2.0.10.0

• LOCKSS Configuration Service version 2.0.4.0

• LOCKSS Poller Service version 2.0.2.0

• LOCKSS Metadata Extraction Service version 2.0.3.0

• LOCKSS Metadata Service version 2.0.2.0

• PostgreSQL version 9.6.12

• Apache Solr version 7.2.1

• Pywb version 2.4.2 (custom version 2.4.2-1)

• OpenWayback version 2.4.0 (custom version 2.4.0-1)

6.1.4 LOCKSS 2.0.31-alpha3

Released: 2020-10-29
Also known as: LOCKSS 2.0-alpha3a

LOCKSS 2.0.31-alpha3 (also known as LOCKSS 2.0-alpha3a) is the first release of the LOCKSS 2.0-alpha3 system.

Release Notes

• The system’s Docker containers are now managed by MicroK8s, a lightweight Kubernetes environment by
Ubuntu makers Canonical, rather than Docker Swarm.

• Design and performance improvements to the repository layer, including support for multiple disk storage vol-
umes (in preparation for migrating existing LOCKSS boxes, many of which have multiple disk storage volumes).

• The runcluster development environment can be used to run a lightweight LOCKSS system from JAR artifacts
built locally from the Git codebase or retrieved from Maven Central or Sonatype OSSRH.

• Infrastructure for building LOCKSS plugins in the LAAWS environment.

• IP filtering for REST endpoints (similar to IP filtering for the LOCKSS Web user interface).

• Pywb 2.4.2.

• Bugfixes and performance improvements throughout the system.

6.1. Release Notes 37

https://github.com/lockss/lockss-installer
https://github.com/lockss/laaws-repository-service
https://github.com/lockss/laaws-configservice
https://github.com/lockss/laaws-poller
https://github.com/lockss/laaws-metadataextractor
https://github.com/lockss/laaws-metadataservice
https://www.postgresql.org/
https://lucene.apache.org/solr/
https://github.com/webrecorder/pywb
https://github.com/iipc/openwayback
https://www.docker.com/
https://microk8s.io/
https://kubernetes.io/
https://github.com/lockss/laaws-dev-scripts/tree/master/runcluster

LOCKSS System Manual

Component Versions

LOCKSS 2.0.31-alpha3 consists of a configurable set of the following components:

• LOCKSS Installer version 2.0.31-alpha3

• LOCKSS Repository Service version 2.0.10.0

• LOCKSS Configuration Service version 2.0.4.0

• LOCKSS Poller Service version 2.0.2.0

• LOCKSS Metadata Extraction Service version 2.0.3.0

• LOCKSS Metadata Service version 2.0.2.0

• PostgreSQL version 9.6.12

• Apache Solr version 7.2.1

• Pywb version 2.4.2 (custom version 2.4.2-1)

• OpenWayback version 2.4.0 (custom version 2.4.0-1)

6.2 Network Ports

This page describes the default network ports used by the LOCKSS system.

Unless otherwise noted, all ports are TCP.

All ports in the 24600-24699 range should be considered reserved. The LCAP (LOCKSS polling and repair) port
retains its historical value of 9729.

• 8080: Pywb or OpenWayback replay engine

• 9729: LCAP (LOCKSS polling and repair)

• 24600: reserved (currently LOCKSS Configuration Service UI)

• 24602: PostgreSQL

• 24603: Solr

• 24606: ActiveMQ

• 24610: LOCKSS Repository Service - REST port

• 24619: reserved (HDFS FS port)

• 24620: LOCKSS Configuration Service - Rest port

• 24621: LOCKSS Configuration Service - UI port

• 24630: LOCKSS Poller Service - REST port

• 24631: LOCKSS Poller Service - UI port

• 24640: LOCKSS Metadata Extraction Service - REST port

• 24641: LOCKSS Metadata Extraction Service - UI port

• 24650: LOCKSS Metadata Service - REST port

• 24651: LOCKSS Metadata Service - UI port

• 24670: LOCKSS Proxy

38 Chapter 6. Appendix

https://github.com/lockss/lockss-installer
https://github.com/lockss/laaws-repository-service
https://github.com/lockss/laaws-configservice
https://github.com/lockss/laaws-poller
https://github.com/lockss/laaws-metadataextractor
https://github.com/lockss/laaws-metadataservice
https://www.postgresql.org/
https://lucene.apache.org/solr/
https://github.com/webrecorder/pywb
https://github.com/iipc/openwayback

LOCKSS System Manual

• 24671: reserved

• 24672: LOCKSS Audit Proxy

• 24673: reserved

• 24674: ICP server (UDP)

• 24680: LOCKSS Content Server (ServeContent)

• 24681: reserved Pywb replay engine

• 24682: reserved OpenWayback replay engine

6.3 Using MicroK8s

This document will provide instructions to using MicroK8s and Kubernetes commandline to access your cluster.

6.3.1 Using MicroK8s

Typing:

microk8s --help

will give a list of all commands:

Available subcommands are:
add-node
cilium
config
ctr
dashboard-proxy
disable
enable
helm
helm3
istioctl
join
juju
kubectl
leave
linkerd
refresh-certs
remove-node
reset
start
status
stop
inspect

To get more details about a command, type:

microk8s <command> --help

6.3. Using MicroK8s 39

LOCKSS System Manual

Getting the Status

To check the status of your cluster and which addons are enabled:

microk8s status

Example:

microk8s is running
addons:
dashboard: enabled
dns: enabled
metrics-server: enabled
ambassador: disabled
cilium: disabled
fluentd: disabled
gpu: disabled
helm: disabled
helm3: disabled
host-access: disabled
ingress: disabled
istio: disabled
jaeger: disabled
knative: disabled
kubeflow: disabled
linkerd: disabled
metallb: disabled
multus: disabled
prometheus: disabled
rbac: disabled
registry: disabled
storage: disabled

Starting and Stopping

MicroK8s will continue running until you decide to stop it. You can stop MicroK8s and its services by typing the
command:

microk8s stop

You can restart by typing:

microk8s start

40 Chapter 6. Appendix

LOCKSS System Manual

Accessing the Dashboard Locally

MicroK8s provides access to the standard Kubernetes dashboard. You can enable the dashboard and proxy to it on the
local system.

microk8s enable dashboard

microk8s kubectl proxy &

The dashboard is available at the following URL: http://127.0.0.1:8001/api/v1/namespaces/kube-system/
services/https:kubernetes-dashboard:/proxy/

6.3.2 Using Kubernetes

MicroK8s bundles its own version of kubectl for accessing Kubernetes. Use it to run commands to monitor and
control your Kubernetes. Kubectl commands are prefixed by microk8s.

Getting a List of Commands

To get a list of commands, run:

microk8s kubectl

Example:

kubectl controls the Kubernetes cluster manager.

Find more information at: https://kubernetes.io/docs/reference/kubectl/overview/

Basic Commands (Beginner):
create Create a resource from a file or from stdin.
expose Take a replication controller, service, deployment or pod and␣

→˓expose it as a new Kubernetes Service
run Run a particular image on the cluster
set Set specific features on objects

Basic Commands (Intermediate):
explain Documentation of resources
get Display one or many resources
edit Edit a resource on the server
delete Delete resources by filenames, stdin, resources and names, or by␣

→˓resources and label selector

Deploy Commands:
rollout Manage the rollout of a resource
scale Set a new size for a Deployment, ReplicaSet or Replication␣

→˓Controller
autoscale Auto-scale a Deployment, ReplicaSet, or ReplicationController

Cluster Management Commands:
certificate Modify certificate resources.
cluster-info Display cluster info

(continues on next page)

6.3. Using MicroK8s 41

LOCKSS System Manual

(continued from previous page)

top Display Resource (CPU/Memory/Storage) usage.
cordon Mark node as unschedulable
uncordon Mark node as schedulable
drain Drain node in preparation for maintenance
taint Update the taints on one or more nodes

Troubleshooting and Debugging Commands:
describe Show details of a specific resource or group of resources
logs Print the logs for a container in a pod
attach Attach to a running container
exec Execute a command in a container
port-forward Forward one or more local ports to a pod
proxy Run a proxy to the Kubernetes API server
cp Copy files and directories to and from containers.
auth Inspect authorization

Advanced Commands:
diff Diff live version against would-be applied version
apply Apply a configuration to a resource by filename or stdin
patch Update field(s) of a resource using strategic merge patch
replace Replace a resource by filename or stdin
wait Experimental: Wait for a specific condition on one or many␣

→˓resources.
convert Convert config files between different API versions
kustomize Build a kustomization target from a directory or a remote url.

Settings Commands:
label Update the labels on a resource
annotate Update the annotations on a resource
completion Output shell completion code for the specified shell (bash or zsh)

Other Commands:
alpha Commands for features in alpha
api-resources Print the supported API resources on the server
api-versions Print the supported API versions on the server, in the form of

→˓"group/version"
config Modify kubeconfig files
plugin Provides utilities for interacting with plugins.
version Print the client and server version information

Usage:
kubectl [flags] [options]

Use "kubectl <command> --help" for more information about a given command.
Use "kubectl options" for a list of global command-line options (applies to all␣

→˓commands).

42 Chapter 6. Appendix

LOCKSS System Manual

Viewing Nodes

To view your nodes:

microk8s kubectl get nodes

View Cluster Information

To view cluster information:

microk8s kubectl cluster-info

To view everything currently running in the cluster:

microk8s kubectl get all --all-namespaces

To view running services in the default namespace:

microk8s kubectl get services

• Use --all-namespaces for all services in all namespaces

• Use -n kube-system for the Kubernetes system

• Use -n lockss for LOCKSS-specific services

Viewing Pod Logs

microk8s kubectl get pods <options>

microk8s kubectl logs <podname>

Describing a Running Pod

To describe a running pod:

microk8s kubectl get pods <options>

microk8s kkubectl describe <podname>

6.3. Using MicroK8s 43

	Introduction
	System Prerequisites
	Machine
	Operating System

	Security Considerations
	Networking
	System Privileges

	Upgrading From LOCKSS 2.0-alpha2
	Recommended Approach
	Upgrade Path
	Updating the LOCKSS Installer
	Running the Upgrade Command
	Installing Snap and MicroK8s
	Modifying the Environment
	Reconfiguring the System
	Starting LOCKSS

	Installing the LOCKSS System
	Creating the lockss User
	Creating the User on CentOS, OpenSUSE and RHEL
	Creating the User on Debian, Linux Mint and Ubuntu
	Obtaining a shell running as lockss

	Disabling Packet Filters
	Disabling firewalld
	Disabling ufw

	Installing Git
	Checking for Git
	Installing Git
	Installing Git with Apt
	Installing Git with Dnf
	Installing Git with Yum
	Installing Git with Zypper

	Downloading the LOCKSS Installer
	Installing Snap
	Checking for Snap
	Installing Snap
	Installing Snap with Apt
	Installing Snap with Dnf
	Installing Snap with Yum
	Installing Snap with Zypper

	Enabling Classic Confinement
	Enabling Snap
	Logging Out and Back In
	Verifying Snap
	Configuring Snap Updates

	Installing MicroK8s
	Installing MicroK8s
	Troubleshooting

	Joining the microk8s Group
	Logging Out and Back In
	Generating the Kubernetes Configuration
	Starting MicroK8s

	Configuring DNS
	Configuring CoreDNS
	Example 1
	Example 2

	Verifying CoreDNS

	Checking the System

	Configuring the LOCKSS System
	Running the LOCKSS System
	Starting the LOCKSS System
	Shutting down the LOCKSS System
	Restarting a Running LOCKSS System
	Removing a Configured LOCKSS System

	Using the LOCKSS System
	Using the LOCKSS Configuration Service
	Accessing the Web User Interface
	Adding Archival Units
	Configuring a Crawl Proxy
	Managing Access to the Web User Interfaces

	Using the LOCKSS Crawler Service
	Accessing the Web User Interface
	Monitoring Crawl Status in the System
	Causing an Archival Unit to Crawl
	Crawl Status Screen
	Top-Level Crawl Information
	Crawl Status Entry

	Using the LOCKSS Poller Service
	Accessing the Web User Interface
	Requesting Polls
	Monitoring Polling and Voting

	Using the LOCKSS Metadata Extraction Service
	Accessing the Web User Interface
	Requesting Metadata Extraction

	Using the LOCKSS Metadata Service
	Accessing the Web User Interface
	Requesting Metadata Information

	Replaying Web Content with Pywb
	Accessing the Pywb User Interface
	Replaying a URL
	Finding a URL From an AU to Replay

	Replaying Web Content with OpenWayback
	Accessing the OpenWayback User Interface
	Replaying a URL
	Finding a URL From an AU to Replay

	Appendix
	Release Notes
	LOCKSS 2.0.34-alpha3
	LOCKSS 2.0.33-alpha3
	LOCKSS 2.0.32-alpha3
	LOCKSS 2.0.31-alpha3

	Network Ports
	Using MicroK8s
	Using MicroK8s
	Getting the Status
	Starting and Stopping
	Accessing the Dashboard Locally

	Using Kubernetes
	Getting a List of Commands
	Viewing Nodes
	View Cluster Information
	Viewing Pod Logs
	Describing a Running Pod

