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CHAPTER

ONE

RELEASES

1.1 LOCKSS 2.0-alpha7

development

• LOCKSS 2.0.72-alpha7 (2023-09-02) latest

• LOCKSS 2.0.71-alpha7 (2023-08-29)

1.2 LOCKSS 1.77

stable

• LOCKSS 1.77.6 (2023-10-18) latest

• LOCKSS 1.77.3 (2023-08-22)

1.3 Archived 2.x Releases

1.3.1 LOCKSS 2.0-alpha6

• LOCKSS 2.0.61-alpha6 (2023-01-23)

1.3.2 LOCKSS 2.0-alpha5

• LOCKSS 2.0.55-alpha5 (2022-07-06)

• LOCKSS 2.0.54-alpha5 (2022-01-27)

• LOCKSS 2.0.53-alpha5 (2022-01-24)

• LOCKSS 2.0.52-alpha5 (2022-01-02)

• LOCKSS 2.0.51-alpha5 (2021-12-17)

3

/projects/manual/en/2.0-alpha7/appendix/release-notes.html#lockss-2-0-72-alpha7
/projects/manual/en/2.0-alpha7/appendix/release-notes.html#lockss-2-0-71-alpha7
https://github.com/lockss/lockss-daemon/releases/tag/release-candidate_1-77-b6
https://github.com/lockss/lockss-daemon/releases/tag/release-candidate_1-77-b3
/projects/manual/en/2.0-alpha6/appendix/release-notes.html#lockss-2-0-61-alpha6
/projects/manual/en/2.0-alpha5/appendix/release-notes.html#lockss-2-0-55-alpha5
/projects/manual/en/2.0-alpha5/appendix/release-notes.html#lockss-2-0-54-alpha5
/projects/manual/en/2.0-alpha5/appendix/release-notes.html#lockss-2-0-53-alpha5
/projects/manual/en/2.0-alpha5/appendix/release-notes.html#lockss-2-0-52-alpha5
/projects/manual/en/2.0-alpha5/appendix/release-notes.html#lockss-2-0-51-alpha5
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1.3.3 LOCKSS 2.0-alpha4

• LOCKSS 2.0.43-alpha4 (2021-12-15)

• LOCKSS 2.0.42-alpha4 (2021-12-13)

• LOCKSS 2.0.41-alpha4 (2021-06-28)

1.3.4 LOCKSS 2.0-alpha3

• LOCKSS 2.0.34-alpha3 (2021-06-04)

• LOCKSS 2.0.33-alpha3 (2021-01-29)

• LOCKSS 2.0.32-alpha3 (2020-11-09)

• LOCKSS 2.0.31-alpha3 (2020-10-29)

1.3.5 LOCKSS 2.0-alpha2

• LOCKSS 2.0.26-alpha2 (2020-02-26)

• LOCKSS 2.0.25-alpha2 (2020-02-25)

• LOCKSS 2.0.24-alpha2 (2020-02-25)

• LOCKSS 2.0.23-alpha2 (2020-02-16)

• LOCKSS 2.0.22-alpha2 (2020-02-10)

• LOCKSS 2.0.21-alpha2 (2020-02-06)

1.3.6 LOCKSS 2.0-alpha1

• LOCKSS 2.0.11-alpha1 (2019-05-13)

1.3.7 LOCKSS 2.0-alpha0

• LOCKSS 2.0-alpha technology preview (2019-04-05)

1.4 Archived 1.x Releases

1.4.1 LOCKSS 1.76

• LOCKSS 1.76.5 (2023-01-23)

4 Chapter 1. Releases

/projects/manual/en/2.0-alpha4/appendix/release-notes.html#lockss-2-0-43-alpha4
/projects/manual/en/2.0-alpha4/appendix/release-notes.html#lockss-2-0-42-alpha4
/projects/manual/en/2.0-alpha4/appendix/release-notes.html#lockss-2-0-41-alpha4
/projects/manual/en/2.0-alpha3/appendix/release-notes.html#lockss-2-0-34-alpha3
/projects/manual/en/2.0-alpha3/appendix/release-notes.html#lockss-2-0-33-alpha3
/projects/manual/en/2.0-alpha3/appendix/release-notes.html#lockss-2-0-32-alpha3
/projects/manual/en/2.0-alpha3/appendix/release-notes.html#lockss-2-0-31-alpha3
/projects/manual/en/2.0-alpha2/appendix/release-notes.html#lockss-2-0-26-alpha2
/projects/manual/en/2.0-alpha2/appendix/release-notes.html#lockss-2-0-25-alpha2
/projects/manual/en/2.0-alpha2/appendix/release-notes.html#lockss-2-0-24-alpha2
/projects/manual/en/2.0-alpha2/appendix/release-notes.html#lockss-2-0-23-alpha2
/projects/manual/en/2.0-alpha2/appendix/release-notes.html#lockss-2-0-22-alpha2
/projects/manual/en/2.0-alpha2/appendix/release-notes.html#lockss-2-0-21-alpha2
/projects/manual/en/2.0-alpha1/appendix/release-notes.html#lockss-2-0-11-alpha1
https://github.com/lockss/lockss-daemon/releases/tag/release-candidate_1-76-b5
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1.4.2 LOCKSS 1.75

• LOCKSS 1.75.9 (2022-01-10)

• LOCKSS 1.75.8 (2021-12-06)

• LOCKSS 1.75.7 (2021-06-03)

• LOCKSS 1.75.5 (2021-02-10)

1.4.3 LOCKSS 1.74

• LOCKSS 1.74.10 (2020-06-29)

• LOCKSS 1.74.7 (2019-02-06)

• LOCKSS 1.74.3 (2018-11-06)

• LOCKSS 1.74.2 (2018-07-23)

1.4.4 Older Releases

• LOCKSS from 1.54.x to 1.74.3

• LOCKSS from 1.37.x to 1.53.x

• LOCKSS from 1.3.x to 1.36.x

1.4. Archived 1.x Releases 5

https://github.com/lockss/lockss-daemon/releases/tag/release-candidate_1-75-b9
https://github.com/lockss/lockss-daemon/releases/tag/release-candidate_1-75-b8
https://github.com/lockss/lockss-daemon/releases/tag/release-candidate_1-75-b7
https://github.com/lockss/lockss-daemon/releases/tag/release-candidate_1-75-b5
https://github.com/lockss/lockss-daemon/releases/tag/release-candidate_1-74-b10
https://github.com/lockss/lockss-daemon/releases/tag/release-candidate_1-74-b7
https://github.com/lockss/lockss-daemon/releases/tag/release-candidate_1-74-b3
https://github.com/lockss/lockss-daemon/releases/tag/release-candidate_1-74-b2
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CHAPTER

TWO

SECURITY

This section discusses security issues related to the LOCKSS system.

Date Reference Summary
2023-09-08

CVE-2022-39135 Does not affect LOCKSS 2.x to date
Read more...

2022-01-02

CVE-2021-45105
CVE-2021-44832

Affects LOCKSS 2.x up to and
including 2.0.51-alpha5
Resolved in LOCKSS 2.0.52-alpha5
Read more...

2021-12-13

CVE-2021-44228
CVE-2021-45046
CVE-2021-4104

Affects LOCKSS 2.x up to and
including 2.0.42-alpha4
Resolved in LOCKSS 2.0.43-alpha4
Read more...

2.1 CVE-2022-39135

First published: 2023-09-08

Tip: LOCKSS 2.x to date (2.0.72-alpha7 as of this writing), when used with its embedded Apache Solr container, is
not affected by CVE-2022-39135.

The successive embedded Apache Solr containers used by default in LOCKSS 2.x up to and including version 2.0.72-
alpha7, namely versions 6.6.5, 7.2.1, and 8.11.2 of Solr, are not used in the vulnerable manner described in CVE-2022-
39135. No action is required if using LOCKSS 2.0.72-alpha7 or earlier with embedded Solr (the default mode).

7
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References

• https://nvd.nist.gov/vuln/detail/CVE-2022-39135

• https://solr.apache.org/security.html#apache-solr-is-vulnerable-to-cve-2022-39135-via-sql-handler

2.2 CVE-2021-45105 and CVE-2021-44832

First published: 2022-01-02

Attention: The LOCKSS 2.x system up to and including 2.0.51-alpha5, and the custom Solr and OpenWay-
back containers it includes, are affected by CVE-2021-45105 and CVE-2021-44832.

Description

Following the early December 20211 discovery of well-publicized critical remote code execution vulnerabilities in
Apache Log4j 2.x, a ubiquitous Java library for recording information to software logs, additional Log4j 2.x vulnera-
bilities of moderate severity have been discovered, tracked as CVE-2021-45105 and CVE-2021-44832.

These vulnerabilities affect the LOCKSS system 2.x up to and including 2.0.51-alpha5 (originally released 2021-12-
17), and the custom Solr and OpenWayback containers it includes, requiring an upgrade to fix.

Note that the LOCKSS 1.x system is not affected by these vulnerabilities, requiring no action at this time.

Remediation

Attention: The recommended remediation is to upgrade LOCKSS 2.0.51-alpha5 and earlier to LOCKSS
2.0.52-alpha5 or later.

• To upgrade from LOCKSS 2.0.51-alpha5 to 2.0.52-alpha5:

1. Log in to the host system as the lockss user and navigate to the lockss-installer directory.

2. Stop the LOCKSS system with this command:

scripts/stop-lockss

3. Upgrade the LOCKSS Installer to 2.0.52-alpha5 with this command:

curl -sSfL https://www.lockss.org/downloader | sh -s - --git-tag=version-2.0.52-
→˓alpha5

or:

wget -qO- https://www.lockss.org/downloader | sh -s - --git-tag=version-2.0.52-
→˓alpha5

4. Restart the LOCKSS system with this command:
1 See CVE-2021-44228, CVE-2021-45046 and CVE-2021-4104.

8 Chapter 2. Security

https://nvd.nist.gov/vuln/detail/CVE-2022-39135
https://solr.apache.org/security.html#apache-solr-is-vulnerable-to-cve-2022-39135-via-sql-handler


LOCKSS Documentation Portal

scripts/start-lockss

• To upgrade from LOCKSS 2.0-alpha4 (all variants) to LOCKSS 2.0.52-alpha5, see Upgrading From LOCKSS
2.0-alpha4 in the LOCKSS 2.0-alpha5 System Manual.

• To upgrade from LOCKSS 2.x version 2.0-alpha3 or earlier (all variants) to LOCKSS 2.0.52-alpha5, you will
need to upgrade incrementally; see Upgrading From LOCKSS 2.0-alpha1, Upgrading From LOCKSS 2.0-alpha2,
Upgrading From LOCKSS 2.0-alpha3, and Upgrading From LOCKSS 2.0-alpha4.

Important: If you use the LOCKSS 2.x system with an external Solr database or external OpenWayback replay
engine, talk to your system administrator about ensuring these external systems, which can also be affected by these
vulnerabilities, are up to date.

References

• https://nvd.nist.gov/vuln/detail/CVE-2021-45105

• https://nvd.nist.gov/vuln/detail/CVE-2021-44832

• https://logging.apache.org/log4j/2.x/security.html

2.3 CVE-2021-44228, CVE-2021-45046 and CVE-2021-4104

First published: 2021-12-13
Last updated: 2022-01-02

Attention: The LOCKSS 2.x system up to and including version 2.0.42-alpha4, and the custom Solr and
OpenWayback containers it includes, are affected by CVE-2021-44228 ("Log4Shell"), CVE-2021-45046 and
CVE-2021-4104.

Description

A critical remote code execution vulnerability has been identified in Apache Log4j 2.x, a ubiquitous Java library for
recording information to software logs. Tracked as CVE-2021-44228 and also nicknamed "Log4Shell" or "LogJam",
this vulnerability led to the discovery of another critical remote code execution vulnerability severe in Log4j 2.x (CVE-
2021-45046) and a related vulnerability in Log4j 1.x (CVE-2021-4104).

These vulnerabilities affect the LOCKSS system 2.x up to and including version 2.0-alpha4b, and the custom Solr and
OpenWayback containers it includes, requiring an upgrade to fix.

Note that the LOCKSS 1.x system is not affected by these vulnerabilities, requiring no action at this time.

2.3. CVE-2021-44228, CVE-2021-45046 and CVE-2021-4104 9

/projects/manual/en/2.0-alpha5/upgrading/index.html
/projects/manual/en/2.0-alpha5/upgrading/index.html
/projects/manual/en/2.0-alpha2/upgrading.html
/projects/manual/en/2.0-alpha3/introduction/upgrading.html
/projects/manual/en/2.0-alpha4/upgrading/index.html
/projects/manual/en/2.0-alpha5/upgrading/index.html
https://nvd.nist.gov/vuln/detail/CVE-2021-45105
https://nvd.nist.gov/vuln/detail/CVE-2021-44832
https://logging.apache.org/log4j/2.x/security.html
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Remediation

Attention: Because additional vulnerabilities in Log4j 2.x have been discovered, the recommended remedi-
ation is to upgrade to LOCKSS version 2.0.42-alpha4 and earlier to LOCKSS 2.0.52-alpha5 immediately.

If you cannot upgrade LOCKSS 2.0.42-alpha4 and earlier to LOCKSS 2.0.52-alpha5 in a timely manner, we recom-
mend at least shutting it down by logging in as the lockss user, navigating to the lockss-installer directory,
and running the command scripts/stop-lockss, until such time as you are able to perform an upgrade.

• To upgrade from LOCKSS 2.0-alpha4 (all variants) to LOCKSS 2.0.52-alpha5, see Upgrading From LOCKSS
2.0-alpha4 in the LOCKSS 2.0-alpha5 System Manual.

• To upgrade from LOCKSS 2.0-alpha3 and earlier (all variants), you will need to upgrade incrementally; see
Upgrading From LOCKSS 2.0-alpha1, Upgrading From LOCKSS 2.0-alpha2, Upgrading From LOCKSS 2.0-
alpha3, and Upgrading From LOCKSS 2.0-alpha4.

Important: If you use the LOCKSS 2.x system with an external Solr database or external OpenWayback replay
engine, talk to your system administrator about ensuring these external systems, which can also be affected by these
vulnerabilities, are up to date.

References

• https://nvd.nist.gov/vuln/detail/CVE-2021-44228

• https://nvd.nist.gov/vuln/detail/CVE-2021-45046

• https://nvd.nist.gov/vuln/detail/CVE-2021-4104

• https://logging.apache.org/log4j/2.x/security.html
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/projects/manual/en/2.0-alpha5/upgrading/index.html
/projects/manual/en/2.0-alpha5/upgrading/index.html
/projects/manual/en/2.0-alpha2/upgrading.html
/projects/manual/en/2.0-alpha3/introduction/upgrading.html
/projects/manual/en/2.0-alpha4/upgrading/index.html
/projects/manual/en/2.0-alpha4/upgrading/index.html
/projects/manual/en/2.0-alpha5/upgrading/index.html
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://nvd.nist.gov/vuln/detail/CVE-2021-45046
https://nvd.nist.gov/vuln/detail/CVE-2021-4104
https://logging.apache.org/log4j/2.x/security.html
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CHAPTER

FOUR

LOCKSS 1.X TO 2.X MIGRATION GUIDE

Warning: This page is under construction. LOCKSS 1.78 and LOCKSS 2.0-beta1 have not yet been released.

Welcome, LOCKSS 1.x users!

This document will guide you as you install LOCKSS 2.x and migrate the data you preserve in LOCKSS 1.x to LOCKSS
2.x.

You have the option to install LOCKSS 2.x on a brand-new physical or virtual machine (recommended), or to install
it on the same machine as LOCKSS 1.x.

Tip: Why is a new machine recommended?

• Running LOCKSS 1.x and LOCKSS 2.x together on the same machine will significantly degrade performance
and cause the migration process to take much longer.

• Unlike LOCKSS 1.x, LOCKSS 2.x can be installed on a great variety of operating systems. This is an opportunity
to move to a new machine better fitting your institution's IT infrastructure preferences.

4.1 Overview of the Migration

The migration process has three major phases:

1. Preparing your LOCKSS 2.x machine.

If you are installing LOCKSS 2.x on a new machine (recommended), you will need to commission a new Linux
host.

If you are installing LOCKSS 2.x on a LOCKSS 1.x machine, you will need to ensure that the machine meets
the requirements for LOCKSS 2.x, and if necessary to upgrade the operating system.

2. Installing and configuring LOCKSS 2.0-beta1.

3. Configuring and running the migration process in the LOCKSS 1.x Web user interface.

15
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4.2 Frequently Asked Questions about the Migration

How long will the migration take?

The duration of the migration process is proportional to the amount of content preserved in the LOCKSS 1.x system.
A LOCKSS 1.x system the size of a Global LOCKSS Network node is expected to take many weeks to migrate to
LOCKSS 2.x.

If I am installing LOCKSS 2.x on my LOCKSS 1.x machine, do I need to have at least as much free
space as the LOCKSS 1.x system occupies?

No, there is a documented mode for running the migration tool that progressively reclaims disk space as AUs are
migrated from LOCKSS 1.x to LOCKSS 2.x. That being said, installing LOCKSS 2.x on a brand-new machine is
recommended, and if you must install LOCKSS 2.x on the same machine as LOCKSS 1.x, having at least as much free
space as the LOCKSS 1.x system occupies is preferred.

Can I use the LOCKSS system while the migration is in progress?

Largely, yes.

• Each previously existing archival unit becomes temporarily unavailable at some point during the migra-
tion.

The migration tool processes existing AUs in the LOCKSS 1.x system sequentially. Each AU in turn becomes
unavailable in the LOCKSS 1.x system, then its contents are copied to the LOCKSS 2.x system, then the AU
becomes available in the LOCKSS 2.x system.

• During the migration process, a previously existing archival unit is active in either the LOCKSS 1.x system
or the LOCKSS 2.x system (except during its content copy, where it is unavailable in both).

Between the time the migration process starts and the time a given AU becomes unavailable in the LOCKSS 1.x
system, you can see the AU in the Web user interface of the LOCKSS 1.x system (port 8081), but you should
limit your dealings to "read-only" interactions.

Once a given AU's contents have been migrated to the LOCKSS 2.x system, the AU is fully operational; you can
interact with it in any way you like in the LOCKSS 2.x system, including in the LOCKSS 2.x Web user interface
(ports 24600-24699).

• During the migration process, the LOCKSS 1.x system forwards certain operations to the LOCKSS 2.x
system.

The LOCKSS 1.x system knows how to respond to certain operations related to AUs that have already been fully
migrated to the LOCKSS 2.x system. Poll requests from other nodes in your LOCKSS network are forwaded by
the LOCKSS 1.x system to the LOCKSS 2.x polling service, and the responses are relayed back to the poller,
for applicable AUs. Likewise, proxy requests, ServeContent Web replay requests and OpenURL queries are
forwarded by the LOCKSS 1.x system to the corresponding LOCKSS 2.x service for applicable AUs.

What this means is that other nodes in your LOCKSS network and clients of your LOCKSS node continue to
interact with your existing LOCKSS 1.x node throughout the migration. Only at the end of the migration process
will your LOCKSS 2.x system become your sole LOCKSS node while your LOCKSS 1.x system is taken out of
the equation.

• While the migration process is underway, new archival units should be created in the LOCKSS 2.x system.

After the migration process begins, you should add any new AUs to your LOCKSS 2.x system. These new AUs
are then immediately operational in your LOCKSS 2.x system.

16 Chapter 4. LOCKSS 1.x to 2.x Migration Guide
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What might not work properly during the migration process?

FIXME

• OpenURL

• Subscription manager

FIXME -- IGNORE ALL THIS BELOW:

1. Prepare your LOCKSS 2.x machine.

Select the scenario that fits your situation:

LOCKSS 2.x on a new machine

You will need to commission a new Linux host. See the LOCKSS 2.0-beta1 System Prerequisites page.

LOCKSS 2.x on a LOCKSS 1.x machine

For historical reasons, many LOCKSS 1.x machines are currently running RHEL 7 compatible operating systems
like CentOS 7, which have reached end of life. Before co-installing LOCKSS 2.x with LOCKSS 1.x, you must
upgrade your RHEL 7 compatible system like CentOS 7 to a RHEL 9 compatible operating system like
Rocky Linux 9.

• CentOS 7 to Rocky Linux 9 (recommended): See Alma ELevate in the LOCKSS Community Wiki. This
upgrade path uses the Alma ELevate tool.

• CentOS 8.5 or CentOS Stream to Rocky Linux 9: See How to migrate to Rocky Linux from CentOS Stream,
CentOS, AlmaLinux, RHEL, or Oracle Linux in the Rocky Linux Documentation. This upgrade path uses
the migrate2rocky tool.

• CentOS 8.4 to AlmaLinux OS 9: See AlmaLinux Migration Guide in the AlmaLinux Wiki. This upgrade
path uses the almalinux-deploy tool.

• RHEL 7 to RHEL 9: See Upgrading from RHEL 7 to RHEL 8 and Upgrading from RHEL 8 to RHEL 9 in
the Red Hat Customer Portal. This upgrade path uses the Leapp tool.

• CentOS 7 or CentOS 8 or CentOS Stream to Oracle Linux 9: See Switch From CentOS Linux to Oracle
Linux in the Oracle Help Center. This upgrade path uses the centos2ol tool.

4.2. Frequently Asked Questions about the Migration 17

https://docs.lockss.org/projects/manual/en/unstable/introduction/prerequisites.html
https://github.com/lockss/community/wiki/Alma-ELevate
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CHAPTER

FIVE

LOCKSS NETWORK ADMINISTRATOR GUIDE

Note: The LOCKSS Network Administrator Guide is under construction.

Welcome to the LOCKSS Network Administrator Guide. This section of the LOCKSS Documentation Portal
contains information aimed at administrators of LOCKSS networks.
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CHAPTER

SIX

LOCKSS PLUGIN DEVELOPER GUIDE

Note: The LOCKSS Plugin Developer Guide is under construction.

6.1 Introduction

This section offers a conceptual tour of LOCKSS plugins and a brief XML format reference.

6.1.1 LOCKSS Plugin Concepts

LOCKSS Plugin

A LOCKSS plugin is a bundle of descriptors, rules and code loaded into the LOCKSS software, describing how to
harvest and process a preservation target.

A preservation target might be an individual Web site, or a family of related Web sites (for instance all Web sites
powered by the same content publishing platform), or a corpus of Web-accessible resources discovered through some
interface (for example an OAI-PMH server, or a service with an API).

Archival Unit

In almost all cases, the preservation target is preserved in plugin-defined chunks called archival units (or AUs for
short).

What these chunks are depends on the situation, but generally the goal is to split the preservation target into chunks
of manageable size that are expected to become unchanging eventually, for instance time-bound chunks. For example,
in a LOCKSS plugin for a preservation target that consists of serial publications, an AU could be equated with one
volume or one year of one publication.

21



LOCKSS Documentation Portal

Plugin Configuration Parameters

A LOCKSS plugin leaves placeholders in rules and code called Plugin Configuration Parameters. An AU is identified
by a plugin and values for each of the plugin's configuration parameters. When the parameter values for an AU are
substituted for the placeholders in the plugin's rules and code, the result is rules and code suited for that specific AU.

Typical plugin parameters include a URL prefix or URL fragment (e.g. base URL, directory name...), an identifier (e.g.
ISSN of a journal, ISBN of a book, publication code, database identifier of an object...), a year or a date range, a part
number (e.g. volume number, numbered subdivision...), and more.

Plugin Format

A LOCKSS plugin is expressed as a mapping from keys to values. Except for rare exceptions that are built into the
LOCKSS software, LOCKSS plugins consist of an XML file containing these key-value pairs, accompanied by optional
Java class files (compiled Java code), bundled together in a JAR file (a Zip file of Java class files and associated
metadata).

Plugin Feature Categories

This guide groups plugin components into conceptual categories, which are introduced briefly in subsections below
and have a dedicated section each in this guide:

• Identification Features: features related to the identification, versioning and parameterization of the plugin.

• Crawl Control Features: features related to the definition and behavior of content crawls.

• Crawl Validation Features: features related to content validation in the context of a crawl.

• Poll Control Features: features that influence the operation of the LOCKSS audit and repair protocol.

• Hash Filtering Features: features related to content canonicalization for inter-node comparison purposes.

• Metadata Extraction Features: features related to the extraction and interpretation of metadata from preserved
content.

• Web Replay Features: features related to supporting the replay of Web content.

• Inheritance Features: features related to sharing similar behavior among a set of plugins.

• Miscellaneous Features.

Identification Features

All plugins define a number of identifying aspects:

• Plugin Identifier: a unique identifier for the plugin.

• Plugin Name: a user-friendly name for the plugin.

• Plugin Version: the plugin's version number.

• Plugin Configuration Parameters: a list of configuration parameter descriptors, defining the placeholders in use
in the plugin's rules and code.

• AU Name: a rule to generate a default name for each AU based on the plugin name and the plugin parameters,
in the event the AU does not have a name in the AU inventory.

• Required Daemon Version: the release number of the earliest version of the LOCKSS software that supports all
the features required by the plugin.
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The Identification chapter covers these plugin aspects.

Crawl Control Features

The following plugin aspects can be involved in controlling how content is crawled:

• Start URLs: one or more URLs from which the crawl of an AU begins.

• Crawl Seed: in lieu of a list of start URLs, code called a crawl seed can compute the starting points of the crawl
of an AU, for instance by interacting with an API.

• Permission URLs: one or more URLs giving the LOCKSS software permission to crawl an AU, if permission is
not given on the start URLs.

• Per-Host Permission Path: path where permission statement may be found on hosts not listed in start URLs or
Permission URLs. Useful for sites such as Internet Archive that have banks of similar hosts with unpredictable
names.

• Permitted Host Pattern: pattern rules to allow collection from hosts that cannot explicitly grant permission, for
example CDN hosts used to distribute standard components used by web sites such as Javascript libraries.

• Crawl Rules: sequential rules determining if a URL discovered during the crawl of an AU should in turn be
fetched as part of the AU or not.

• Crawl Window: a crawl window controls what times of day or days of the week crawls against the preservation
target are allowed; by default an AU is eligible to crawl at any time.

• Recrawl Interval: the amount of time before an AU that has previously been crawled successfully is eligible to
attempt crawling again.

• Refetch Depth: number of links away from the start URL(s) that will be fetched by normal crawls. Deep crawls
may be used to cause all URLs in an AU to be refetched (subject to If-Modified-Since).

• Fetch Pause Time: the minimum amount of time between two fetches of consecutive URLs in the crawl of an
AU.

• Crawl Rate Limiter: fine-grained control of the maximum rate at which URLs may be fetched, based on media
type, URL pattern, day of week or time of day.

• Crawl Pool: controls the number of simultaneous crawls that may be running against any one host or platform.

• Response Handler: custom action taken when fetching a URL results in certain error conditions or HTTP re-
sponse codes.

• URL Normalizer: code that normalizes URL variants into canonical URLs.

• Link Extractor: media type-specific code that extracts or extrapolates URLs from the collected content, to allow
the crawler to follow links. Link extractors are built in for most standard media types that contain links (HTML,
CSS, PDF, etc.); plugins may supply link extractors for additional media types or extend the built-in extractors
to handle additional constructs.

• Crawl Filter: code that filters content before a link extractor is run. Supplements the crawl rules in cases where
more context it needed to determine whether a link should be followed.

• URL Fetcher: custom code to fetch URLs, for cases that require a more elaborate interaction than a single GET.

• URL Consumer: custom code to store collected URLs in the repository. E.g., for sites that redirect permanent
URLs to one-time URLs, to store the content at the permanent URL, or to adapt to sites undergoing HTTP to
HTTPS transitions

The Crawl Control chapter covers these plugin aspects.
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Crawl Validation Features

A plugin can optionally define aspects that help verify that the crawl is obtaining the content it is supposed to:

• Redirect to Login URL Pattern: determines whether an HTTP redirect returned by the site is actually a redirect
to a login page.

• Login Page Checker: determines if a URL fetched successfully (HTTP 200) is in fact a login page or some other
undesirable substitute for the intended content.

• Content Validator: code that determines if certain URLs pass a validation test, most often a media type check or
format validation test.

• Substance Patterns: pattern rules to check that at least one URL processed during the crawl of an AU is substan-
tive (non-trivial), for example to verify that at least one substantive object was processed rather than just tables
of contents.

• Substance Predicate: code that determines whether a collected URL has substantive content. Alternative to
substance patterns, allows programmatic substance determination.

The Crawl Validation chapter covers these plugin aspects.

Poll Control Features

These plugin elements include:

• Exclude URLs From Polls Pattern: patterns for URLs that should not be included in polls.

• Poll Result Weight: patterns for URLs to allow some disagreements to influence the results more than others.

• Repair From Publisher When Too Close: instructs the poller to fetch a new copy of files from the origin site when
too-few peers agree on the content.

• Repair From Peer If Missing: patterns for URLs that should be fetched from a peer, when the poller detects that
they're missing.

The Poll Control chapter covers these plugin aspects.

Hash Filtering Features

Many plugins designed to harvest and preserve Web-native content need to go to some lengths to enable comparison of
(hashes of) content between the nodes in a LOCKSS network, because fetching a given URL is likely to result in non-
identical results from node to node, or from fetch to fetch on the same node. This is due to a raft of causes: advertising
banners, personalization ("You are logged in as...", "Downloaded by..."), time-variable content (current date, news
ticker), location-variable content (CDN URLs, institution-dependent integration with a link resolver), related content
widgets ("You may also be interested in..."), reverse citations and pingbacks ("This page has been referenced by..."),
tracking data and watermarking embedded in the content, temporary system messages ("The site will be down for
maintenance from..."), and more. Some of these variations now appear outside HTML in media types like PDF or
Microsoft PowerPoint files.

To canonicalize content before comparison between nodes in the LOCKSS audit and repair protocol, a plugin can
define a hash filter for each affected media type. The LOCKSS plugin framework offers a variety of utility classes
specifically for HTML and PDF filtering, as part of its general content filtering framework.

See the Hash Filtering chapter for more details.
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Metadata Extraction Features

The LOCKSS plugin framework enables the extraction of metadata from ingested content, through an extensible meta-
data extraction framework; a plugin can optionally define:

• Article Iterator: code that traverses the AU and enumerates all the logical items (journal articles, electronic
books, electronic theses and dissertations, repository objects...) found in it, as bundles of related URLs.

• Article Metadata Extractor: code that extracts metadata from the logical items enumerated by the article iterator
using file metadata extractors, and that post-processes and stores the extracted metadata in the LOCKSS metadata
database.

• File Metadata Extractor: code that extracts metadata from files with a given media type.

The Metadata Extraction chapter covers these plugin aspects.

Web Replay Features

A plugin can define optional elements that are applied by the embedded ServeContent Web replay engine:

• Link Rewriter: code used by the built-in ServeContent replay engine that changes intra-site links or other URLs
to point back to the ServeContent host. Link rewriters are built in for most standard media types that contain
links (html, css, javascript, etc.); plugins may supply link rewriters for additional media types or extend the built
in rewriters to handle additional constructs.

• Rewrite HTML Meta URLs: pattern that determines which HTML meta tags have values that should be rewritten
during web replay. Some tags (e.g., citation URLs) should not be rewritten to point back to the ServeContent
host.

The Web Replay chapter covers these plugin aspects.

Inheritance Features

Commonalities among a set of similar plugins may be abstracted out in to a parent plugin, to reduce duplication. Each
child plugin inherits all the elements of the parent plugin.

• Parent Plugin: names the parent plugin from which this plugin should inherit elements.

• Parent Plugin Version: the version number of the parent plugin, to guard against changed to a parent inadvertently
changing the behavior of a child plugin.

The Inheritance chapter covers these plugin aspects.

Miscellaneous Features

• Feature Version Map: associates version strings with several of the plugin elements. For polling-related ele-
ments such as hash filters, the version is used to determine which other peers a peer may invite into polls - the
plugin's polling version must be the same across all peers participating in a poll. For metadata extractors and
substance checker patterns, the version is used to detect when a change in the plugin may require content to be
reprocessed.

• Feature URLs: provides information to allow the Open URL resolver to locate articles, issue ToCs, etc.

• Bulk Content: declares that the AUs managed by the plugin are not organized semantically (e.g, they may span
publications). Affects metadata extraction.

• Archive File Types: specifying the types of archive files (zip, tar, etc.) in this plugin's AUs whose members will
be individually accessible. Usually used with bulk content plugins to index metadata for archive members.
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• AU Config User Message: text displayed when a user adds one or more AUs managed by this plugin. Typically
used when a site requires crawlers to register with them.

• Plugin Notes: commentary displayed along with a plugin's definition in the UI.

Minimalistic Plugin

A simple plugin will likely have at minimum:

• Identifying aspects, including configuration parameters.

• Start URLs, and optionally permission URLs.

• Crawl rules.

If extracting metadata from the preserved content into the LOCKSS metadata database is desired, the plugin will also
need:

• Metadata extraction elements, including an article iterator.

If the preserved content consists of non-static HTML Web pages, it will likely need:

• Hash filters.

Use of other aspects is situation-dependent, varying in need based on characteristics and behavior of the preservation
target. This guide gives some guidance about when certain components are needed and to what purpose.

Plugin Compatibility Between LOCKSS 1.x and LOCKSS 2.x

Conceptually, LOCKSS plugins are the same in the classic LOCKSS system (LOCKSS 1.x) and in the rearchitected
LOCKSS system (LOCKSS 2.x), although future features will only be developed for the rearchitected LOCKSS system
without being backported to the classic LOCKSS system, as the classic system becomes deprecated.

6.1.2 LOCKSS Plugin Format

A LOCKSS plugin is expressed as a mapping from keys to values. Except for rare exceptions that are built into the
LOCKSS software, LOCKSS plugins consist of an XML file containing these key-value pairs, accompanied by optional
Java class files (compiled Java code), bundled together in a JAR file (a Java-specific Zip file).

The XML format of the plugin is a single <map> element, containing any number of map entries expressed as <entry>
elements. Each map entry is a key-value pair, namely a plugin key which must be the first child of the <entry> element
and must be of type String, and a plugin value which must be the second child of the <entry> element. See the Plugin
Value Types for more about possible plugin values.

The order of the key-value pairs does not matter. The effect of specifying multiple entries with the same key is undefined.

Example:

<map>

<!-- plugin key with string value -->
<entry>
<string>key_one</string>
<string>Lots Of Copies Keep Stuff Safe</string>

</entry>

<!-- plugin key with integer value -->
(continues on next page)
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(continued from previous page)

<entry>
<string>key_two</string>
<int>3000</int>

</entry>

<!-- plugin key with long integer value (e.g. number of milliseconds) -->
<entry>
<string>key_three</string>
<long>1209600000</long>

</entry>

<!-- plugin key with list value (e.g. list of strings) -->
<entry>
<string>key_four</string>
<list>
<string>List item one</string>
<string>List item two</string>
<string>List item three</string>

</list>
</entry>

<!-- plugin key with map value (e.g. mapping from string to string) -->
<entry>
<string>key_five</string>
<map>
<entry>
<string>subkey1</string>
<string>subvalue1</string>

</entry>
<entry>
<string>subkey2</string>
<string>subvalue2</string>

</entry>
<entry>
<string>subkey3</string>
<string>subvalue3</string>

</entry>
</map>

</entry>

</map>
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Plugin Value Types

Plugin values can be of the following types:

XML Element Plugin Value Type
<string> String
<int> Integer
<long> Long Integer
<list> List
<map> Map

String

XML Element
<string>

Description
An arbitrary string of characters.

Because the plugin is expressed as XML, some characters in the string must be properly encoded:

• & is encoded as &amp;.

• < is encoded as &lt;.

• > is encoded as &gt;.

• Non-printable characters and characters outside the 7-bit ASCII set are encoded with numeric character
references1, either decimal character references (for example é encoded as &#0233; or &#233;) or hex-
adecimal character references (for example é encoded as &#x00e9; or &#x00E9; or &#xe9; or &#xE9;).

Examples

<string>This is a string value</string>

<string>Taylor &amp; Francis</string>

<string>Vive la diff&#x00e9;rence !</string>

Integer

XML Element
<int>

Description
An integer value. Represented internally as a 32-bit integer.

Example
1 See also:
– https://www.w3.org/TR/2006/REC-xml11-20060816/#dt-charref
– https://www.w3.org/TR/2008/REC-xml-20081126/#dt-charref
– https://en.wikipedia.org/wiki/Numeric_character_reference
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<int>1234</int>

Long Integer

XML Element
<long>

Description
A long integer value. Represented internally as a 64-bit integer.

Example

<long>5000000000</long>

List

XML Element
<list>

Description
A <list> elements containing an ordered sequence of values (typically all of the same type).

Example

<!-- list of strings -->
<list>
<string>Item one</string>
<string>Item two</string>
<string>Item three</string>

</list>

Map

XML Element
<map>

Description
A <map> element containing an unordered sequence of map entries expressed as <entry> elements. Each map
entry is a key-value pair; the key must be the first child of the <entry> element and must be a String, and the
value must be the second child of the <entry> element.

The effect of specifying the same key in more than one map entry is undefined.

Example

<!-- mapping from string to string -->
<map>
<entry>
<string>key1</string>
<string>value1</string>

</entry>
<entry>

(continues on next page)
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(continued from previous page)

<string>key2</string>
<string>value2</string>

</entry>
<entry>
<string>key3</string>
<string>value3</string>

</entry>
</map>

6.2 Identification

This section introduces plugin features related to the identification, versioning and parameterization of the plugin.

6.2.1 Plugin Identifier

Plugin Key
plugin_identifier

Plugin Value Type
String

Sample

<entry>
<string>plugin_identifier</string>
<string>edu.example.plugin.publisherx.PublisherXPlugin</string>

</entry>

Description
A unique identifier for the plugin.

The plugin identifier uniquely identifies the plugin. It is used as part of AUIDs (the unique identifier of each
AU) and to name a Java package where the plugin's Java code lives. As such, the plugin identifier is really a
fully-qualified Java class name, which consists of a Java package name and a Java class name.

Just like a file path such as /home/jsmith/documents/myfile.txt is a hierarchical path from more general
directories (home) to more specific directories (jsmith, then documents) and ending with a file name (myfile.
txt), a fully-qualified Java class name is a hierarchical path starting with the institution responsible for the plugin
(conventionally by reversed Internet domain name), for example edu.stanford.library for the organization
whose Web site is library.stanford.edu), followed by more levels (typically the next one plugin, and then
another to identify the plugin family or individual plugin), and finally ending with a "file name". The separators
are periods.

Example
In the Global LOCKSS Network (GLN), the plugin maintained by the LOCKSS Program to process volumes of
journals by Oxford University Press (OUP) hosted on the Silverchair platform has the identifier org.lockss.
plugin.silverchair.oup.OupSilverchairPlugin:

• org.lockss is the reverse of lockss.org.

• plugin is the root level of all plugins maintained by the LOCKSS Program.
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• silverchair is a level grouping all Silverchair-based plugins.

• oup is the most specific level identifying the OUP plugin.

• OupSilverchairPlugin is the class name.

<entry>
<string>plugin_identifier</string>
<string>org.lockss.plugin.silverchair.oup.OupSilverchairPlugin</string>

</entry>

(You can find this plugin on GitHub at https://github.com/lockss/lockss-daemon/blob/master/plugins/src/org/
lockss/plugin/silverchair/oup/OupSilverchairPlugin.xml.)

File Path
In a source code repository, the plugin identifier translates into a file path like so: org.lockss.
plugin.silverchair.oup.OupSilverchairPlugin corresponds to org/lockss/plugin/silverchair/
oup/OupSilverchairPlugin.xml.

6.2.2 Plugin Name

Plugin Key
plugin_name

Plugin Value Type
String

Sample

<entry>
<string>plugin_name</string>
<string>Publisher X Journals Plugin</string>

</entry>

Description
A user-friendly name for the plugin.

This name is only displayed in a few places in the LOCKSS Web user interface, for instance in the Plugins table.

Example
In the Global LOCKSS Network (GLN), the plugin to process volumes of journals by Oxford University Press
(OUP) hosted on the Silverchair platform has the name Oxford University Press Journals Plugin.

<entry>
<string>plugin_name</string>
<string>Oxford University Press Plugin</string>

</entry>

(You can find this plugin on GitHub at https://github.com/lockss/lockss-daemon/blob/master/plugins/src/org/
lockss/plugin/silverchair/oup/OupSilverchairPlugin.xml.)
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6.2.3 Plugin Version

Plugin Key
plugin_version

Plugin Value Type
String (not integer)

Sample

<entry>
<string>plugin_version</string>
<string>7</string>

</entry>

Description
The plugin's version number.

The first release of a plugin is typically numbered 1, and the next revision 2, and so on, although the releases do
not have to be numerically consecutive as long as they only go up with time.

Although only the numeric part is important, the integer can be followed by a hyphen and an arbitrary string,
which is why this value is of type is string and not integer.

6.2.4 Plugin Configuration Parameters

Plugin Key
plugin_config_props

Plugin Value Type
List of <org.lockss.daemon.ConfigParamDescr> stanzas

Sample

<entry>
<string>plugin_config_props</string>
<list>
<org.lockss.daemon.ConfigParamDescr>
<key>base_url</key>
<displayName>Base URL</displayName>
<description>Usually of the form http://&lt;journal-name&gt;.com/</

→˓description>
<type>3</type>
<size>40</size>
<definitional>true</definitional>
<defaultOnly>false</defaultOnly>

</org.lockss.daemon.ConfigParamDescr>
<org.lockss.daemon.ConfigParamDescr>
<key>journal_id</key>
<displayName>Journal Identifier</displayName>
<description>Identifier for journal (often used as part of file names)</

→˓description>
<type>1</type>
<size>40</size>
<definitional>true</definitional>

(continues on next page)
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<defaultOnly>false</defaultOnly>
</org.lockss.daemon.ConfigParamDescr>
<org.lockss.daemon.ConfigParamDescr>
<key>volume_name</key>
<displayName>Volume Name</displayName>
<type>1</type>
<size>20</size>
<definitional>true</definitional>
<defaultOnly>false</defaultOnly>

</org.lockss.daemon.ConfigParamDescr>
</list>

</entry>

Description
A list of configuration parameter descriptors, defining the placeholders in use in the plugin's rules and code.

A plugin's rules and code (start and permission URLs, crawl rules, substance patterns...) are made general by
identifying placeholders for AU-specific values and substituting them later. These placeholders for variable
values are called plugin configuration parameters.

Defining the necessary configuration parameters for a given plugin comes mostly from studying the URL struc-
ture of the preservation target, finding patterns, and identifying the parts of those patterns that differ between
Archival Units.

Structure
Each plugin configuration parameter is represented by a <org.lockss.daemon.ConfigParamDescr> stanza
that looks like this:

<org.lockss.daemon.ConfigParamDescr>
<key>...</key>
<type>...</type>
<displayName>...</displayName>
<description>...</description>
<size>...</size>
<definitional>...</definitional> <!-- default: true -->
<defaultOnly>...</defaultOnly> <!-- default: false -->

</org.lockss.daemon.ConfigParamDescr>

Only <key> and <type> are required.

Each <org.lockss.daemon.ConfigParamDescr> stanza contains the following important elements:

• <key>: the parameter key, an identifier for the configuration parameter, standing in as a placeholder for
the AU-specific value in rules and code. Example: base_url for a base URL (URL prefix common to all
or most URLs in an AU).

• <type>: the parameter type, an integer describing the type of value the configuration parameter represents
(string, integer, etc.). See Parameter Types below for details.

• <definitional>: whether the parameter is a definitional parameter or non-definitional parameter,
expressed as the booleans true or false. Most parameters are definitional (true), meaning the parameter
is part of the set of parameters that together form the unique identity of the AU.

• <defaultOnly>: set to false in almost all cases.

The other elements only play a role in the Manual Add/Edit screen in the LOCKSS Web user interface:
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• <displayName>: the parameter display name, a user-friendly name for the parameter in in the Manual
Add/Edit screen.

• <description>: the parameter description, a user-friendly text string describing the parameter and
giving an example value in the Manual Add/Edit screen.

• <size>: the parameter display size in characters in the Manual Add/Edit screen.

Parameter Types

The following plugin configuration parameter types are defined in the LOCKSS software:

Parameter Type Code Parameter Type
1 String
2 Integer
3 URL
4 Year
5 Boolean
6 Non-Negative Integer
7 String Range
8 Numeric Range
9 Set
10 User Credentials
11 Long Integer
12 Time Interval

String

Parameter Type Code
1

Description
A non-empty string.

Built-In Examples
Volume Name, Journal Directory, Journal Abbreviation, Journal Identifier, Journal ISSN , Publisher Name, OAI
Spec, Crawl Proxy, Crawl Test Substance Threshold

URL

Parameter Type Code
3

Description
Used most frequently as a URL prefix. This must be a valid URL string according to Java's java.net.URL
constructor (https://docs.oracle.com/javase/8/docs/api/java/net/URL.html#URL-java.lang.String-).

Built-In Examples
Base URL, Second Base URL, OAI Request URL

See Also
Derivative URL Parameters
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User Credentials

Parameter Type Code
10

Description
A colon-separated username and password, for instance myuser:mypass.

Built-In Examples
Username and Password

Integer

Parameter Type Code
2

Description
The integer can be negative. Represented internally as a 32-bit integer.

Non-Negative Integer

Parameter Type Code
6

Description
The integer can be zero but cannot be negative. Represented internally as a 32-bit integer.

Built-In Examples
Volume Number

Long Integer

Parameter Type Code
11

Description
The value can be negative. Represented internally as a 64-bit integer.

Year

Parameter Type Code
4

Description
A four-digit year, or the special value 0 to denote an unspecified year.

Built-In Examples
Year

See Also
Derivative Year Parameters
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Time Interval

Parameter Type Code
12

Description
Specified as a long integer followed by a suffix indicating a time unit: ms for milliseconds, s for seconds, m for
minutes, h for hours, d for days, w for weeks (7 days), y for years (365 days). If there is no suffix, the default
interpretation is milliseconds. The time unit suffixes are case-insensitive.

Built-In Examples
New Content Crawl Interval

String Range

Parameter Type Code
7

Description
The range is specified with two strings separated by a dash (-) and is inclusive. If there is a single string with no
dash, the range is interpreted to contain only that string.

Built-In Examples
Issue Range

Numeric Range

Parameter Type Code
8

Description
The range is specified with two integers separated by a dash (-). If there is a single integer, the range is interpreted
to contain only that integer.

Built-In Examples
Numeric Issue Range

Set

Parameter Type Code
9

Description
Specified as a comma-separated list of strings, with whitespace surrounding strings ignored, and empty strings
discarded.

The string {n,m}, where n and m are integers, will be replaced by all the integers in the range from n to m inclu-
sive. For instance, the set {2002-2005}, 2003Supp, 2004Supp is equivalent to 2002, 2003, 2003Supp,
2004, 2004Supp, 2005.

Built-In Examples
Issue Set
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Boolean

Parameter Type Code
5

Description
The canonical values are true or false, although yes, on and 1 are recognized as true, and no, off and 0 are
recognized as false. All these value strings are case-insensitive.

Built-In Examples
AU Down, AU Off-Limits, AU Closed

Built-In Definitional Parameters

The LOCKSS software defines a number of built-in definitional parameters.

Definitional parameters give an AU its identity -- change the value for a definitional parameter and you will be describing
a different slice of content (different year, different directory, etc.).

Base URL

Parameter Key
base_url

Parameter Type
URL

Canonical Form

<org.lockss.daemon.ConfigParamDescr>
<key>base_url</key>
<type>3</type>
<displayName>Base URL</displayName>
<description>Usually of the form http://&lt;journal-name&gt;.com/</description>
<size>40</size>
<definitional>true</definitional>
<defaultOnly>false</defaultOnly>

</org.lockss.daemon.ConfigParamDescr>

Second Base URL

Parameter Key
base_url2

Parameter Type
URL

Canonical Form

<org.lockss.daemon.ConfigParamDescr>
<key>base_url2</key>
<type>3</type>
<displayName>Second Base URL</displayName>
<description>Use if AU spans two hosts</description>

(continues on next page)
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<size>40</size>
<definitional>true</definitional>
<defaultOnly>false</defaultOnly>

</org.lockss.daemon.ConfigParamDescr>

Year

Parameter Key
year

Parameter Type
Year

Canonical Form

<org.lockss.daemon.ConfigParamDescr>
<key>year</key>
<type>4</type>
<displayName>Year</displayName>
<description>Four digit year (e.g., 2004)</description>
<size>4</size>
<definitional>true</definitional>
<defaultOnly>false</defaultOnly>

</org.lockss.daemon.ConfigParamDescr>

Volume Number

Parameter key
volume

Parameter Type
Non-Negative Integer

Canonical Form

<org.lockss.daemon.ConfigParamDescr>
<key>volume</key>
<type>6</type>
<displayName>Volume No.</displayName>
<description>Numeric volume number, e.g. 7</description>
<size>8</size>
<definitional>true</definitional>
<defaultOnly>false</defaultOnly>

</org.lockss.daemon.ConfigParamDescr>
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Volume Name

Parameter Key
volume_name

Parameter Type
String

Canonical Form

<org.lockss.daemon.ConfigParamDescr>
<key>volume_name</key>
<type>1</type>
<displayName>Volume Name</displayName>
<description>Volume name, e.g. 23A</description>
<size>20</size>
<definitional>true</definitional>
<defaultOnly>false</defaultOnly>

</org.lockss.daemon.ConfigParamDescr>

Issue Range

Parameter Key
issue_range

Parameter Type
String Range

Canonical Form

<org.lockss.daemon.ConfigParamDescr>
<key>issue_range</key>
<type>7</type>
<displayName>Issue Range</displayName>
<description>A Range of issues in the form: aaa-zzz</description>
<size>20</size>
<definitional>true</definitional>
<defaultOnly>false</defaultOnly>

</org.lockss.daemon.ConfigParamDescr>

Numeric Issue Range

Parameter Key:
num_issue_range

Parameter Type
Numeric Range

Canonical Form

<org.lockss.daemon.ConfigParamDescr>
<key>num_issue_range</key>
<displayName>Numeric Issue Range</displayName>

(continues on next page)
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<description>A Range of issues in the form: min-max</description>
<type>8</type>
<size>20</size>
<definitional>true</definitional>
<defaultOnly>false</defaultOnly>

</org.lockss.daemon.ConfigParamDescr>

Issue Set

Parameter Key
issue_set

Parameter Type
Set

Canonical Form

<org.lockss.daemon.ConfigParamDescr>
<key>issue_set</key>
<type>9</type>
<displayName>Issue Set</displayName>
<description>A comma delimited list of issues. (eg issue1, issue2)</description>
<size>20</size>
<definitional>true</definitional>
<defaultOnly>false</defaultOnly>

</org.lockss.daemon.ConfigParamDescr>

Journal Directory

Parameter Key
journal_dir

Parameter Type
String

Canonical Form

<org.lockss.daemon.ConfigParamDescr>
<key>journal_dir</key>
<type>1</type>
<displayName>Journal Directory</displayName>
<description>Directory name for journal content (i.e. 'american_imago').</

→˓description>
<size>40</size>
<definitional>true</definitional>
<defaultOnly>false</defaultOnly>

</org.lockss.daemon.ConfigParamDescr>
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Journal Abbreviation

Parameter Key
journal_abbr

Parameter Type
String

Canonical Form

<org.lockss.daemon.ConfigParamDescr>
<key>journal_abbr</key>
<type>1</type>
<displayName>Journal Abbreviation</displayName>
<description>Abbreviation for journal (often used as part of file names).</

→˓description>
<size>10</size>
<definitional>true</definitional>
<defaultOnly>false</defaultOnly>

</org.lockss.daemon.ConfigParamDescr>

Journal Identifier

Parameter Key
journal_id

Parameter type
String

Canonical Form

<org.lockss.daemon.ConfigParamDescr>
<key>journal_id</key>
<type>1</type>
<displayName>Journal Identifier</displayName>
<description>Identifier for journal (often used as part of file names).</

→˓description>
<size>40</size>
<definitional>true</definitional>
<defaultOnly>false</defaultOnly>

</org.lockss.daemon.ConfigParamDescr>

Journal ISSN

Parameter Key
journal_issn

Parameter Type
String

Canonical Form
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<org.lockss.daemon.ConfigParamDescr>
<key>journal_issn</key>
<type>1</type>
<displayName>Journal ISSN</displayName>
<description>International Standard Serial Number.</description>
<size>20</size>
<definitional>true</definitional>
<defaultOnly>false</defaultOnly>

</org.lockss.daemon.ConfigParamDescr>

Publisher Name

Note: Use of this parameter is not recommended. It is unlikely the publisher name will appear in URLs, as opposed
to a publisher abbreviation or code.

Parameter Key
publisher_name

Parameter Type
String

Canonical Form

<org.lockss.daemon.ConfigParamDescr>
<key>publisher_name</key>
<type>1</type>
<displayName>Publisher Name</displayName>
<description>Publisher Name for Archival Unit</description>
<size>40</size>
<definitional>true</definitional>
<defaultOnly>false</defaultOnly>

</org.lockss.daemon.ConfigParamDescr>

OAI Request URL

Parameter Key
oai_request_url

Parameter Type
URL

Canonical Form

<org.lockss.daemon.ConfigParamDescr>
<key>oai_request_url</key>
<type>3</type>
<displayName>OAI Request URL</displayName>
<description>Usually of the form http://&lt;journal-name&gt;.com/</description>
<size>40</size>
<definitional>true</definitional>

(continues on next page)

42 Chapter 6. LOCKSS Plugin Developer Guide



LOCKSS Documentation Portal

(continued from previous page)

<defaultOnly>false</defaultOnly>
</org.lockss.daemon.ConfigParamDescr>

OAI Spec

Parameter Key
oai_spec

Parameter Type
String

Canonical Form

<org.lockss.daemon.ConfigParamDescr>
<key>oai_spec</key>
<type>1</type>
<displayName>OAI Spec</displayName>
<description>Spec for journal in the OAI crawl</description>
<size>40</size>
<definitional>true</definitional>
<defaultOnly>false</defaultOnly>

</org.lockss.daemon.ConfigParamDescr>

Built-In Non-Definitional Parameters

The LOCKSS software also defines a number of non-definitional parameters.

Non-definitional parameters are necessary as placeholders in plugin rules and code, but they do not contribute to the
AU's identity -- you may need to change the value of a non-definitional parameter but it will not change which slice of
content the AU corresponds to.

Some non-definitional parameters might be listed in the plugin itself, like the user_pass parameter for user credentials,
if all AUs are expected to supply a value for the parameter, but most others are involved in the lifecycle of an AU and
need not be listed in the plugin, like the pub_down parameter for AUs that are not currently allowed to crawl.

Username and Password

Parameter Key
user_pass

Parameter Type
User Credentials

Canonical Form

<org.lockss.daemon.ConfigParamDescr>
<key>user_pass</key>
<type>10</type>
<displayName>Username:Password</displayName>
<description>Colon-separated username and password string, e.g. myuser:mypass</

→˓description>
<size>30</size>

(continues on next page)
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<definitional>false</definitional>
<defaultOnly>false</defaultOnly>

</org.lockss.daemon.ConfigParamDescr>

Description
Some harvesting processes may require user credentials (username and password). A non-definitional parameter
is needed because the username and password might be different for different harvesting nodes, or may change
over time, without changing the identity of the AU (for instance its year).

AU Down

Parameter Key
pub_down

Parameter Type
Boolean

Canonical Form

<org.lockss.daemon.ConfigParamDescr>
<key>pub_down</key>
<type>5</type>
<displayName>Pub Down</displayName>
<description>If true, AU is no longer available from the publisher</description>
<size>4</size>
<definitional>false</definitional>
<defaultOnly>true</defaultOnly>

</org.lockss.daemon.ConfigParamDescr>

Description
This non-definitional parameter is used routinely in the title database files of LOCKSS networks, but does not
need to appear explicitly in plugins.

When this parameter value is supplied as true for an AU, the AU is considered to be "down", meaning that it is
currently unavailable from its source and should not attempt to crawl or recrawl.

The name pub_down, for "publisher down", reflects the idea that the entire publisher site (content provider) might
be unavailable, but this parameter can be used to mark individual AUs as being down outside the context of an
entire content provider being unavailable.

AU Off-Limits

Parameter Key
pub_never

Parameter Type
Boolean

Canonical Form

<org.lockss.daemon.ConfigParamDescr>
<key>pub_never</key>
<type>5</type>

(continues on next page)
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<displayName>Pub Never</displayName>
<description>If true, don't try to access any content from publisher</description>
<size>4</size>
<definitional>false</definitional>
<defaultOnly>true</defaultOnly>

</org.lockss.daemon.ConfigParamDescr>

Description
This non-definitional parameter is used routinely in the title database files of LOCKSS networks, but does not
need to appear explicitly in plugins.

When this parameter value is supplied as true for an AU, the AU is considered to be "off-limits", meaning that
the LOCKSS software will not satisfy a proxy request for a URL it determines to be in this AU by going to the
original Web site.

AU Closed

Parameter Key
au_closed

Parameter Type
Boolean

Canonical Form

<org.lockss.daemon.ConfigParamDescr>
<key>au_closed</key>
<type>5</type>
<displayName>AU Closed</displayName>
<description>If true, AU is complete, no more content will be added</description>
<size>4</size>
<definitional>false</definitional>
<defaultOnly>true</defaultOnly>

</org.lockss.daemon.ConfigParamDescr>

Description
This non-definitional parameter is used routinely in the title database files of LOCKSS networks, but does not
need to appear explicitly in plugins.

When this parameter value is supplied as true for an AU, the AU is marked as "closed", meaning it is considered
that no more content will be added to it in the future.

Crawl Proxy

Parameter Key
crawl_proxy

Parameter Type
String

Canonical Form
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<org.lockss.daemon.ConfigParamDescr>
<key>crawl_proxy</key>
<type>1</type>
<displayName>Crawl Proxy</displayName>
<description>If set to host:port, crawls of this AU will be proxied. If set to␣

→˓DIRECT, crawls will not be proxied, even if the LOCKSS node has been configured␣
→˓with a default crawl proxy.</description>
<size>40</size>
<definitional>false</definitional>
<defaultOnly>true</defaultOnly>

</org.lockss.daemon.ConfigParamDescr>

Description
This non-definitional parameter is used routinely in the title database files of LOCKSS networks, but does not
need to appear explicitly in plugins.

When this parameter value is supplied as a host:port pair (for example proxy.myuniversity.edu:8080) for
an AU, crawls of the AU will be proxied through the given proxy. When this parameter value is supplied as the
special value DIRECT for an AU, crawls of the AU will not be proxied, even if the LOCKSS node is configured
to always use a crawl proxy.

New Content Crawl Interval

Parameter Key
nc_interval

Parameter Type
Time Interval

Canonical Form

<org.lockss.daemon.ConfigParamDescr>
<key>nc_interval</key>
<type>12</type>
<displayName>Crawl Interval</displayName>
<description>The interval at which the AU should crawl the publisher site.</

→˓description>
<size>10</size>
<definitional>false</definitional>
<defaultOnly>true</defaultOnly>

</org.lockss.daemon.ConfigParamDescr>

Description
This non-definitional parameter is used routinely in the title database files of LOCKSS networks, but does not
need to appear explicitly in plugins.

When this parameter value is supplied as a time interval for an AU, crawls of the AU will be attempted with the
given requested interval rather than the LOCKSS node's default new content crawl interval.

46 Chapter 6. LOCKSS Plugin Developer Guide



LOCKSS Documentation Portal

Crawl Test Substance Threshold

Parameter Key
crawl_test_substance_threshold

Parameter Type
String

Canonical Form

<org.lockss.daemon.ConfigParamDescr>
<key>crawl_test_substance_threshold</key>
<type>1</type>
<displayName>Crawl Test Substance Threshold</displayName>
<description>Minimum number of substance URLs necessary for successful␣

→˓abbreviated crawl test.</description>
<size>20</size>
<definitional>false</definitional>
<defaultOnly>true</defaultOnly>

</org.lockss.daemon.ConfigParamDescr>

Description
This non-definitional parameter is used in special circumstances, for networks set up to perform abbreviated test
crawls.

Derivative Parameters

For parameters of type URL and Year, the system automatically brings into existence derivative parameters with
special names, as if those parameters had also been defined by the plugin.

Tip: Derivative parameters have fallen out of favor. The contemporary way to achieve the same effect is through
parameter functors.

Derivative URL Parameters

For any parameter of type URL with key urlkey, the following derivative parameters are automatically defined:

• urlkey_host of type String, whose value is just the host portion of the corresponding URL value. For example,
if base_url has a value of https://www.publisher.com/jabc/, base_url_host has a value of www.
publisher.com.

• urlkey_path of type String, whose value is just the path portion of the corresponding URL value. For example,
if base_url has a value of https://www.publisher.com/jabc/, base_url_path has a value of /jabc/.
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Derivative Year Parameters

For any parameter of type Year with key yearkey, the following derivative parameter is automatically defined:

• au_short_yearkey of type Integer, whose value is the corresponding year value modulo 100. For example, if
year has a value of 1998, au_short_year has a value of 98; if year has a value of 2002, au_short_year
has a value of 2 (the integer 2, not the string 02.

Tip: In many cases, what is useful is the zero-padded, two-character string from the derivative short year, not
the potentially single-digit integer; use %02d in the printf format string.

6.2.5 AU Name

Plugin Key
au_name

Plugin Value Type
String

Plugin Value Format
The value is a printf format string, that expands to a string. The printf format string can use plugin configura-
tion parameter keys (e.g. base_url, journal_issn, volume_name) as values.

Sample

<entry>
<string>au_name</string>
<string>"Publisher X Journals Plugin, Base URL %s, Journal Identifier %s, Volume

→˓%s", base_url, journal_id, volume_name</string>
</entry>

Description
A rule to generate a default name for each AU, based on the plugin name and the plugin parameters. The rule is
used to generate a name for the AU if it is not listed in the title database (AU inventory).

Conventionally, this is made of a comma-separated list of the Plugin Name and the display name and value
of each of the Plugin Configuration Parameters, from more general (e.g. base_url) to more specific (e.g.
volume_name).

6.2.6 Required Daemon Version

Plugin Key
required_daemon_version

Plugin Value Type
String

Sample

<entry>
<string>required_daemon_version</string>
<string>1.74.7</string>

</entry>
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Description
The release number of the earliest version of the LOCKSS software that supports all the features required by the
plugin.

In the classic LOCKSS system (1.x), this is a string like 1.75.9 (version 1.75.9 or higher) or 1.75.0 (version 1.75.x
or higher). In the rearchitected LOCKSS system (2.x), this is currently only 2.0-alpha1 through 2.0-alpha5.

6.3 Crawl Control

This section introduces plugin features related to the definition and behavior of content crawls.

6.3.1 Start URLs

Plugin Key
au_start_url

Plugin Value Type
One of:

• String

• List of String

Plugin Value Format
The strings are printf format strings, that expand to URLs. The printf format strings accept expressions made
of plugin configuration parameter keys and a small language of functions modifying them (e.g. url_host(...)
applied to a plugin configuration parameter of type URL, resulting in the host portion of the URL).

Sample

<entry>
<string>au_start_url</string>
<string>"%s%s/vol%s/index.html", base_url, journal_id, volume_name</string>

</entry>

Description
One or more URLs from which the crawl of an AU begins.

6.3.2 Crawl Seed

Note: This page is under construction.

Plugin Key
plugin_craw_seed_factory

Plugin Value Type
String

The string is the fully-qualified name of a Java class implementing the org.lockss.crawler.
CrawlSeedFactory interface.

Sample
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<entry>
<string>plugin_craw_seed_factory</string>
<string>edu.example.plugin.publisherx.PublisherXCrawlSeedFactory</string>

</entry>

Description
In lieu of a list of start URLs, code called a crawl seed can compute the starting points of the crawl of an AU, for
instance by interacting with an API.

6.3.3 Permission URLs

Plugin Key
au_permission_url

Plugin Value Type
One of:

• String

• List of String

Plugin Value Format
The strings are printf format strings, that expand to URLs. The printf format strings accept expressions made
of plugin configuration parameter keys and a small language of functions modifying them (e.g. url_host(...)
applied to a plugin configuration parameter of type URL, resulting in the host portion of the URL).

Sample

<entry>
<string>au_permission_url</string>
<string>"%slockss.txt", base_url</string>

</entry>

Description
One or more URLs giving the LOCKSS software permission to crawl an AU, if permission is not given on the
start URLs.

6.3.4 Per-Host Permission Path

Plugin Key
plugin_per_host_permission_path

Plugin Value Type
String

Sample

<entry>
<string>plugin_per_host_permission_path</string>
<string>/lockss.txt</string>

</entry>

Description
Relative path where a permission statement may be found on hosts not listed in start URLs or permission URLs.
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Useful for sites that have banks of similar hosts with unpredictable names, but with a predictable path to the
permission URL on each.

6.3.5 Permitted Host Pattern

Note: This page is under construction.

Plugin Key
au_permitted_host_pattern

Plugin Value Type
One of:

• String

• List of String

Plugin Value Format
The strings are printf format strings, that expand to regular expressions used to match against host names. The
printf format strings accept expressions made of plugin configuration parameter keys and a small language
of functions modifying them (e.g. url_host(...) applied to a plugin configuration parameter of type URL,
resulting in the host portion of the URL).

Example

<entry>
<string>au_permitted_host_pattern</string>
<string>"cdnjs\.cloudflare\.com|fast\.fonts\.net"</string>

</entry>

Description
Pattern rules to allow collection from hosts that cannot explicitly grant permission, such as content distribution
network hosts used to distribute standard components used by Web sites like Javascript libraries and Web fonts.

6.3.6 Crawl Rules

Plugin Key
au_crawlrules

Plugin Value Type
List of String

Plugin Value Format
The strings consist of:

• An integer crawl rule code,

• A comma,

• A printf format string that expands into a regular expression used to match against URLs. The printf
format string accepts expressions made of plugin configuration parameter keys and a small language of
functions modifying them (e.g. url_host(...) applied to a plugin configuration parameter of type URL,
resulting in the host portion of the URL).

Sample
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<entry>
<string>au_crawlrules</string>
<list>
<string>4, "^%s", base_url</string>
<string>1, "^%s.*\.(css|js|gif|jpg|png)$", base_url</string>
<string>2, "^%s%s/vol%s/iss[^/]+/art[^/]+/citedby", base_url, journal_id,␣

→˓volume_name</string>
<string>1, "^%s%s/vol%s/", base_url, journal_id, volume_name</string>
<string>1, "^%spdf/.*\.pdf$", base_url</string>

</list>
</entry>

Description
Sequential rules determining if a URL discovered during the crawl of an AU should in turn be fetched as part of
the AU or not.

Given a URL, the crawler tries each crawl rule in the order of the list, until one of them produces an outcome for
the URL. If none of the crawl rules result in an outcome for the URL, the default outcome is Exclude (the URL
is excluded from the AU).

Crawl Rule Types

The crawl rule codes are:

Crawl Rule Code Crawl Rule Type
1 Include
2 Exclude
3 Include No Match
4 Exclude No Match
5 Include Match Else Exclude
6 Exclude Match Else Include

Include

Crawl Rule Code
1

Description
If the URL matches the regular expression, include the URL in the AU; otherwise, this rule produces no outcome
for the URL.
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Exclude

Crawl Rule Code
2

Description
If the URL matches the regular expression, exclude the URL from the AU; otherwise, this rule produces no
outcome for the URL.

Include No Match

Crawl Rule Code
3

Description
If the URL does not match the regular expression, include the URL in the AU; otherwise, this rule produces no
outcome for the URL.

Exclude No Match

Crawl Rule Code
4

Description
If the URL does not match the regular expression, exclude the URL from the AU; otherwise, this rule produces
no outcome for the URL.

Include Match Else Exclude

Crawl Rule Code
5

Description
If the URL matches the regular expression, include the URL in the AU; otherwise, exclude the URL from the
AU.

Exclude Match Else Include

Crawl Rule Code
6

Description
If the URL matches the regular expression, exclude the URL from the AU; otherwise, include the URL in the
AU.
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6.3.7 Crawl Window

Note: This page is under construction.

Plugin Key
au_crawlwindow, au_crawlwindow_ser

Plugin Value Type
au_crawlwindow value type: String representing the fully-qualified name of a Java class implementing the org.
lockss.plugin.definable.DefinableArchivalUnit.ConfigurableCrawlWindow interface, which is a
factory for the org.lockss.daemon.CrawlWindow interface.

au_crawlwindow_ser value type: a serialized org.lockss.daemon.CrawlWindow object.

Description
A crawl window controls what times of day or days of the week crawls against the preservation target are allowed;
by default an AU is eligible to crawl at any time.

6.3.8 Recrawl Interval

Plugin Key
au_def_new_content_crawl

Plugin Value Type
Long Integer

Sample

<entry>
<string>au_def_new_content_crawl</string>
<long>1209600000</long>

</entry>

Description
The amount of time (in milliseconds) before an AU that has previously been crawled successfully is eligible to
attempt crawling again.

Sample values:

• 31449600000 for 52 weeks (364 days).

• 1209600000 for 2 weeks (the most typical value in the Global LOCKSS Network).

• 604800000 for 1 week.

• 86400000 for 24 hours.
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6.3.9 Refetch Depth

Note: This page is under construction.

Plugin Key
au_refetch_depth

Plugin Value Type
Integer

Sample

<entry>
<string>au_refetch_depth</string>
<int>2</int>

</entry>

Description
Number of links away from a start URL that will be fetched by normal crawls. Deep crawls may be used to cause
all URLs in an AU to be refetched (subject to If-Modified-Since).

6.3.10 Fetch Pause Time

Plugin Key
au_def_pause_time

Plugin Value Type
Long Integer

Sample

<entry>
<string>au_def_pause_time</string>
<long>3000</long>

</entry>

Description
The minimum amount of time (in milliseconds) between two fetches of consecutive URLs in the crawl of an AU.

The most common value in the Global LOCKSS Network is 3000 for no more frequently than every 3 seconds.

6.3.11 Crawl Rate Limiter

Note: This page is under construction.

Plugin Key
?

Plugin Value Type
?
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Description
Fine-grained control of the maximum rate at which URLs may be fetched, based on media type, URL pattern,
day of week or time of day.

6.3.12 Crawl Pool

Plugin Key
plugin_fetch_rate_limiter_source

Plugin Value Type
String

Description
A specification for how AUs are split into crawl pools. Only one new content crawl from a given crawl pool can
happen at once. In the default crawl pool scheme, there is one crawl pool per plugin, but this plugin key can be
used to define a new behavior.

The possible values are:

• au: Each AU has its own crawl pool.

• plugin: The pool name is the Plugin Identifier.

• key:str: The pool name is the string str.

• host:urlparamkey: The pool name is the string host: followed by the value of the AU's parameter
named urlparamkey. If there is no such parameter, or if the parameter is not of type URL, the default
crawl pool scheme applies.

• title_attribute:auattrkey and title_attribute:auattrkey:dflt: The pool name is the string
attr: followed by the value of the AU's attribute named auattrkey. When the attribute is unset, if the
longer form is used then use dflt as the value instead; otherwise the default crawl pool scheme applies.

6.3.13 Response Handler

Note: This page is under construction.

Plugin Key
plugin_cache_result_list

Plugin Value Type
List of String

The list represents a mapping; each string is of the form x=y, mapping from the left-hand side x which can be:

• An HTTP response code (integer).

• One of a finite set of Java exceptions (string).

to the right-hand side y which can be:

• The fully-qualified name of a Java class extending the org.lockss.util.urlconn.CacheException
class.

• The fully-qualified name of a Java class implementing the org.lockss.util.urlconn.
CacheResultHandler interface.

Sample
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<entry>
<string>plugin_cache_result_list</string>
<list>
<string>500=edu.example.plugin.publisherx.PublisherXHttpResponseHandler</string>
<string>java.io.IOException=org.lockss.util.urlconn.CacheException

→˓$RetryableNetworkException_3_30S</string>
</list>

</entry>

6.3.14 URL Normalizer

Note: This page is under construction.

Plugin Key
au_url_normalizer

Plugin Value Type
String

Plugin Value Format
The value is the fully-qualified name of a Java class that implements the org.lockss.plugin.UrlNormalizer
interface.

Sample

<entry>
<string>au_url_normalizer</string>
<string>edu.example.plugin.publisherx.PublisherXUrlNormalizer</string>

</entry>

Description
A URL normalizer maps URL variants to a canonical representation, for example by re-arranging equivalent URL
query strings into a canonical order, removing extraneous URL substrings (for instance session IDs), canonical-
izing the case (for instance to lowercase), etc. so that equivalent variants are stored only once under the canonical
name.

6.3.15 Link Extractor

Note: This page is under construction.

Plugin Key
mediatype_link_extractor_factory, where mediatype is a media type like text/html

Plugin Value Type
String

Plugin Value Format
The value is the fully qualified name of a Java class implementing the org.lockss.plugin.
LinkExtractorFactory interface.

Sample
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<entry>
<string>text/html_link_extractor_factory</string>
<string>edu.example.plugin.publisherx.PublisherXHtmlLinkExtractorFactory</string>

</entry>

Description
The LOCKSS software comes with built-in code to extract URLs from HTML and CSS files encountered during
the crawl of an AU. A URL extracted in this manner is then subject to the URL Normalizer, then the Crawl Rules
determine if it should in turn be included in the AU. If URLs need to be extracted from other file types, or if
the extraction behavior for built-in types like HTML and CSS needs to be extended or customized, this plugin
feature can be used to point the plugin at new link extraction code.

6.3.16 Crawl Filter

Note: This page is under construction.

Plugin Key
mediatype_crawl_filter_factory, where mediatype is a media type like text/html

Plugin Value Type
String

Plugin Value Format
The value is the fully qualified name of a Java class implementing the org.lockss.plugin.FilterFactory
interface.

Sample

<entry>
<string>text/html_crawl_filter_factory</string>
<string>edu.example.plugin.publisherx.PublisherXHtmlCrawlFilterFactory</string>

</entry>

Description
If files of a given media type need to be pre-processed (filtered) before URLs are extracted by the crawler using
a Link Extractor, this plugin feature can be used to point at custom filtering code.

Crawl filters are somewhat related to hash filters.

6.3.17 URL Fetcher

Note: This page is under construction.

Plugin Key
plugin_url_fetcher_factory

Plugin Value Type
String

Plugin Value Format
The value is the fully qualified name of a Java class implementing the org.lockss.plugin.
UrlFetcherFactory interface, which is a factory for the org.lockss.plugin.UrlFetcher interface.
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Sample

<entry>
<string>plugin_url_fetcher_factory</string>
<string>edu.example.plugin.publisherx.PublisherXUrlFetcherFactory</string>

</entry>

Description
Under construction

6.3.18 URL Consumer

Note: This page is under construction.

Plugin Key
plugin_url_consumer_factory

Plugin Value Type
String

Plugin Value Format
The value is the fully qualified name of a Java class implementing the org.lockss.plugin.
UrlConsumerFactory interface, which is a factory for the org.lockss.plugin.UrlConsumer interface.

Sample

<entry>
<string>plugin_url_consumer_factory</string>
<string>edu.example.plugin.publisherx.PublisherXUrlConsumerFactory</string>

</entry>

Description
Under construction

6.4 Crawl Validation

This section introduces features related to content validation in the context of a crawl.

6.4.1 Redirect to Login URL Pattern

Plugin Key
au_redirect_to_login_url_pattern

Plugin Value Type
String

Plugin Value Format
The string is a printf format string that expands to a regular expression used to match against URLs. The
printf format string accepting expressions made of plugin configuration parameter keys.

Sample
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<entry>
<string>au_redirect_to_login_url_pattern</string>
<string>"^%ssignup-login.*", base_url</string>

</entry>

Description
Determines whether an HTTP redirect returned by the crawled site is actually a redirect to a login page.

During the crawl of an AU, a redirect from a URL that is accepted by the crawl rules to a URL that is not is a
non-fatal crawl error, meaning it gets reported at the end of the crawl rather than immediately stopping it.

If a Web site issues an HTTP redirect to a login page URL when an IP address accesses a URL it is not authorized
to view, it is often desirable to recognize this situation differently than other redirects to URLs outside the crawl
rules. This key is used to identify such redirects and treat them as fatal crawl errors instead of non-fatal crawl
errors.

6.4.2 Login Page Checker

Note: This page is under construction.

Plugin Key
au_login_page_checker

Plugin Value Type
String

Plugin Value Format
The value is the fully qualified name of a Java class implementing the org.lockss.daemon.
LoginPageChecker interface.

Sample

<entry>
<string>au_login_page_checker</string>
<string>edu.example.plugin.publisherx.PublisherXLoginPageChecker</string>

</entry>

Description
When fetching a URL that the requesting IP address is not authorized to retrieve, some Web sites respond with
HTTP success code accompanied by an HTML page that is really a login page or error page, rather than with an
HTTP error code. A login page checker is a general interface for checking the contents of a URL and determine
if it is a login page rather than the intended content.

6.4.3 Content Validator

Note: This page is under construction.

Plugin Key
mediatype_content_validator_factory, where mediatype is a media type like application/pdf

Plugin Value Type
String
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Plugin Value Format
The value is the fully qualified name of a Java class implementing the org.lockss.plugin.
ContentValidatorFactory interface, which is a factory for the org.lockss.plugin.ContentValidator
interface.

Sample

<entry>
<string>application/pdf_content_validator_factory</string>
<string>edu.example.plugin.publisherx.PublisherXPdfValidatorFactory</string>

</entry>

Description
A content validator can be used to reject files of a given media type, by examining the headers and/or the content
of a crawled URL.

6.4.4 Substance Patterns

Note: This page is under construction.

Plugin Key
au_substance_url_pattern and au_non_substance_url_pattern

Plugin Value Type
String

Plugin Value Type
The strings are printf format strings that expand to regular expressions used to match against URL. The printf
format strings accepting expressions made of plugin configuration parameter keys.

Sample

<entry>
<string>au_substance_url_pattern</string>
<string>"^%s/%s/(fulltext|pdf)/", base_url, journal_id</string>

</entry>

Description
It can be useful to test whether at least one URL in an AU is "of substance", meaning that it is one of the objects
of preservation interest and not simply navigation pages and ancillary files (icons, CSS stylesheets, Javascript
code). The substance pattern can be used to characterize the URLs of an AU that are of substance. Conversely,
the non-substance pattern can be used to characterize the URLs of an AU that are not of substance.

6.4.5 Substance Predicate

Note: This page is under construction.

Plugin Key
plugin_substance_predicate_factory

Plugin Value Type
String
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Plugin Value Type
The value is the fully qualified name of a Java class implementing the org.lockss.plugin.
SubstancePredicateFactory interface, which is a factory for the org.lockss.plugin.
SubstancePredicate interface.

Sample

<entry>
<string>plugin_substance_predicate_factory</string>
<string>edu.example.plugin.publisherx.PublisherXSubstancePredicateFactory</string>

</entry>

Description
An alternative to the regular expressions in the Substance Patterns is a substance predicate, which is implemented
as Java code.

6.5 Poll Control

This section introduces plugin features that influence the operation of the LOCKSS audit and repair protocol.

6.5.1 Exclude URLs From Polls Pattern

Plugin Key
au_exclude_urls_from_polls_pattern

Plugin Value Type
One of:

• String

• List of String

Plugin Value Type
The strings are printf format strings that expand to regular expressions used to match against URLs. The
printf format strings accept expressions made of plugin configuration parameter keys.

Sample

<entry>
<string>au_exclude_urls_from_polls_pattern</string>
<list>
<string>"^%scss/.*\.css\?version=", base_url</string>
<string>"^%sfiles/[0-9]+/.*\.js", base_url</string>

</list>
</entry>

Description
URLs characterized by the regular expressions expanded from the printf strings are excluded (ignored) during
polls of the AU.
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6.5.2 Poll Result Weight

Plugin Key
au_url_poll_result_weight

Plugin Value Type

• List of String

Plugin Value Format
Each string in the list consists of:

• A regular expression,

• A comma,

• A weight between 0.0 and 1.0.

Sample

<entry>
<string>au_url_poll_result_weight</string>
<list>
<string>\.(css|js|png|jpe?g|png|gif|tiff)\?ver=.*$, 0</string>

</list>
</entry>

Description
This mechanism is a generalization of Exclude URLs From Polls Pattern, which can only exclude URLs from a
poll (equivalent of assigning the corresponding URLs a weight of 0.0). Here, URLs can be assigned a partial
weight, to reduce the importance of certain families of URLs in polls.

6.5.3 Repair From Publisher When Too Close

Note: This page is under construction.

Plugin Key
plugin_repair_from_publisher_when_too_close

Plugin Value Type
?

Description
Under construction

6.5.4 Repair From Peer If Missing

Note: This page is under construction.

Plugin Key
au_repair_from_peer_if_missing_url_pattern

Plugin Value Type
One of:
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• String

• List of String

Plugin Value Format
The strings are printf format strings that expand to regular expressions used to match against URLs. The
printf format strings accept expressions made of plugin configuration parameter keys.

Sample

<entry>
<string>au_repair_from_peer_if_missing_url_pattern</string>
<list>
<string>"^%s.*\.(css|js|png|jpe?g|png|gif|tiff)\?ver=.*$", base_url</string>
<string>"^https://code\.jquery\.org/"</string>

</list>
</entry>

Description
When this feature is set, if during a poll the poller determines it is missing a URL that matches one of the patterns,
it will seek a repair from a peer. This can be useful when a family of URLs keeps getting new variants (with
unique names) rapidly, to allow the variants to spread among the network of peers.

6.6 Hash Filtering

This section introduces plugin features related to content canonicalization for inter-node comparison purposes.

6.6.1 Hash Filter

Plugin Key
mediatype_filter_factory, where mediatype is a media type like text/html

Value Type
String

Plugin Value Type
The string is the fully-qualified name of a Java class implementing the org.lockss.plugin.FilterFactory
interface.

Sample

<entry>
<string>text/html_filter_factory</string>
<string>edu.example.plugin.publisherx.PublisherXHtmlHashFilterFactory</string>

</entry>

Description
To canonicalize content before comparison between nodes in the LOCKSS audit and repair protocol, a plugin
can define a hash filter for each affected media type. The goal is to pre-process content so that it is fit for a logical
comparison between nodes, even if different nodes do not have byte-identical versions. This occurs frequently in
HTML content that has personalizations ("You are logged in as..."), advertising, and other variable content ("You
may also be interested in...", "Top 10 viewed articles this week...", "Recently added articles...") other than the
main content. It can be needed for other media types like PDF and RIS because of timestamping, watermarking,
and other dynamic server behaviors.
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The org.lockss.plugin.FilterFactory interface defines a createFilteredInputStream method that
accepts an org.lockss.plugin.ArchivalUnit object, an InputStream of the URL's raw content, and a
string representing the encoding, and returns an InputStream of the canonicalized byte stream, which does not
need to be a valid object of that media type (it is only used to compute a checksum).

As part of its general content filtering framework, the LOCKSS plugin framework offers a variety of utility
classes specifically for HTML Filters and PDF Filters.

6.6.2 HTML Filters

Note: This page is under construction.

HTML is the media type most frequently in need of transformation and canonicalization, as part of a Hash Filter or
Crawl Filter. To this end, the LOCKSS software contains a variety of utility classes that can be used as building blocks
to construct effective HTML filters.

HtmlFilterInputStream

The org.lockss.filter.html.HtmlFilterInputStream class is a way to parse an InputStream of HTML con-
tent and apply a transform of type org.lockss.filter.html.HtmlNodeFilterTransform to it, resulting in a new
InputStream.

The org.lockss.filter.html.HtmlNodeFilterTransform class provides two kinds of transforms, that ei-
ther filter out all HTML nodes that match a predicate ("exclude transform", very common use pattern) or collect
only HTML nodes that match a predicate ("include transform", less common use pattern). The code of the li-
brary used to implement org.lockss.filter.html.HtmlFilterInputStream and org.lockss.filter.html.
HtmlNodeFilterTransform refers to these predicates as org.htmlparser.NodeFilter.

Whether an "exclude" transform or an "include" transform, most often the predicate is really the union of many smaller
predicates, which can be grouped together by the org.htmlparser.filters.OrFilter class (and other similar
boolean operators).

Although some complex cases call for the definition of a custom predicate, most typical situations can be handled by
predicates predefined in the org.lockss.filter.html.HtmlNodeFilters utility class:

• org.lockss.filter.html.HtmlNodeFilters.tag(String tag): predicate that matches a tag with the
given name. (Many LOCKSS plugins make direct use of the underlying org.htmlparser.filters.
TagNameFilter.TagNameFilter(String) class, but using the utility method is recommended.)

• org.lockss.filter.html.HtmlNodeFilters.tagWithAttribute(String tag, String attr):
predicate that matches a tag with the given name, that defines an attribute with the specified key (regardless of
the value).

• org.lockss.filter.html.HtmlNodeFilters.tagWithAttribute(String tag, String attr,
String val): predicate that matches a tag with the given name, that defines an attribute with the specified
key and value. The variant org.lockss.filter.html.HtmlNodeFilters.divWithAttribute(String
attr, String val) assumes a <div> tag.

• org.lockss.filter.html.HtmlNodeFilters.tagWithAttributeRegex(String tag, String
attr, String regex): predicate that matches a tag with the given name, that defines an attribute with
the specified key, whose value matches the given regular expression. The variant org.lockss.filter.html.
HtmlNodeFilters.tagWithAttributeRegex(String tag, String attr, String regex, boolean
ignoreCase) adds a flag for whether the regular expression is case-insensitive.

• org.lockss.filter.html.HtmlNodeFilters.comment(): predicate that matches any HTML comment.
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• org.lockss.filter.html.HtmlNodeFilters.commentWithString(String str): predicate that
matches HTML comments containing the given string. The variant org.lockss.filter.html.
HtmlNodeFilters.commentWithString(String str, boolean ignoreCase) adds a flag for whether
the test is case-insensitive.

• org.lockss.filter.html.HtmlNodeFilters.commentWithRegex(String regex): predicate that
matches HTML comments matching the given regular expression. The variant org.lockss.filter.html.
HtmlNodeFilters.commentWithRegex(String regex, boolean ignoreCase) adds a flag for whether
the regular expression is case-insensitive.

WhiteSpaceFilter

The org.lockss.filter.WhiteSpaceFilter class is a Reader implementation that canonicalizes whitespace by
collapsing consecutive whitespace characters to a single one. This is useful because many transformations may leave
different numbers of consecutive whitespace characters (perhaps zero) depending on the whitespace surrounding the
outermost tags of various removed nodes.

In many LOCKSS plugins, the typical way to use WhiteSpaceFilter is to turn an InputStream into a Reader,
apply WhiteSpaceReader, and turn the result back into an InputStream for further processing:

InputStream i1 = ...; // an input stream
String e1 = ...; // the encoding of the input stream
Reader r1 = FilterUtil.getReader(i1, e1);
Reader r2 = new WhiteSpaceFilter(r1);
InputStream i2 = new ReaderInputStream(r2);

6.6.3 PDF Filters

Note: This page is under construction.

Increasingly, some content providers generate PDF files dynamically, making each fetch of the same URL slightly
different, just like HTML pages in many cases. To allow the nodes in a LOCKSS network to canonicalize PDF files
for comparison purposes, the LOCKSS software contains a PDF processing and filtering framework that can be used
as building blocks to construct PDF filters1.

The interface of this framework and general tools are in the org.lockss.pdf package, with an implementation based
on Apache PDFBox 1.8 in the org.lockss.pdf.pdfbox package.

Under construction.

1 Additionally, there is legacy code based on (pre-Apache) PDFBox 0.7.3 which is deprecated, and an experimental library based on Apache
PDFBox 2.0 which is in active development.
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6.7 Metadata Extraction

This section introduces plugin features related to the extraction and interpretation of metadata from preserved content.

6.7.1 Introduction to Metadata Extraction

Once content is successfully crawled into an archival unit (AU) in a LOCKSS node, optionally with the help of hash
filters and related plugin features, the AU is preserved by polling and repairing with other nodes in the network holding
the same AU. If metadata extraction from preserved data is desired beyond the preservation of the data itself and the
metadata database is enabled, the plugin needs to specify metadata extraction features.

Metadata extraction relies on a trio of related concepts:

• An Article Iterator groups an AU's URLs into one cluster per article ("article" in the sense of "object" or "item").

The URLs are represented internally as org.lockss.plugin.CachedUrl objects. The object representing an
article's cluster of URLs is of type org.lockss.plugin.ArticleFiles, and is essentially a mapping from
string roles to URLs.

An article iterator is merely an object implementing java.util.Iterator<ArticleFiles>, that comes from
a factory implementing the org.lockss.plugin.ArticleIteratorFactory interface.

• A media type-specific File Metadata Extractor parses the contents of a URL and emits any number of interme-
diate metadata records.

A file metadata extractor is an object implementing the org.lockss.extractor.FileMetadataExtractor
interface and emitting metadata records of type org.lockss.extractor.ArticleMetadata through an ob-
ject implementing the org.lockss.extractor.FileMetadataExtractor.Emitter interface. The latter is
called for each (CachedUrl, ArticleFiles) pair, creating a one-to-many relationship from CachedUrl to
ArticleFiles.

• An Article Metadata Extractor receives each article's ArticleFiles object, and emits any number of processed
metadata records (of the same type ArticleMetadata).

An article metadata extractor implements the org.lockss.extractor.ArticleMetadataExtractor inter-
face and emits ArticleMetadata objects through an object implementing the org.lockss.extractor.
ArticleMetadataExtractor.Emitter interface. The latter is called for each (ArticleFiles,
ArticleMetadata) pair, creating a one-to-many relationship from ArticleFiles to ArticleMetadata.

The article metadata extractor picks and chooses URLs of interest from the ArticleFiles instance, invokes
the file metadata extractors for the corresponding media types yielding intermediate ArticleMetadata objects,
and emits appropriate final ArticleMetadata objects from them.

Although in principle there are file metadata extractors for multiple media types, a one-to-many relationship from
CachedUrl to ArticleFiles in file metadata extractors, and a one-to-many relationship from ArticleFiles
to ArticleMetadata in article metadata extractors, in many situations plugins derive all the metadata they need
from a single media type, there is a one-to-one-to-one correspondence between a CachedUrl, ArticleFiles and
ArticleMetadata triple, and the intermediate metadata records can often be emitted as final metadata records.

This process can be summarized in the following diagram:
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6.7.2 Article Iterator

Plugin Key
plugin_article_iterator_factory

Plugin Value Type
String

Plugin Value Type
The string is the fully-qualified name of a Java class implementing the org.lockss.plugin.ArticleIteratorFactory
interface.

Sample

<entry>
<string>plugin_article_iterator_factory</string>
<string>edu.example.plugin.publisherx.PublisherXArticleIteratorFactory</string>

</entry>

Description
The article iterator is part of the metadata-extraction pipeline. Its function is enumerate the articles (where
"article" is meant as "item" or "object") in the archival unit (AU). Each article is represented by an ArticleFiles
instance.

Rather than traversing the AU's URLs manually through the ArchivalUnit interface and implementing typical
inner workings of a Java Iterator, many article iterators make use of utility classes available in the LOCKSS
software, such as SubTreeArticleIterator and SubTreeArticleIteratorBuilder.
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ArticleFiles

An org.lockss.plugin.ArticleFiles instance groups the main URLs of an article (item) together and labels
them. It is a mapping from roles to URLs1 (which are internally represented as objects implementing org.lockss.
plugin.CachedUrl).

Roles are arbitrary strings, but many typical role strings are defined as constants in the ArticleFiles class, for
example:

• ArticleFiles.ROLE_FULL_TEXT_HTML: a URL for the full text of a work, in HTML form.

• ArticleFiles.ROLE_FULL_TEXT_PDF: a URL for the full text of a work, in PDF form.

• ArticleFiles.ROLE_FULL_TEXT_EPUB: a URL for the full text of a work, in EPUB form.

• ArticleFiles.ROLE_FULL_TEXT_XML: a URL for the full text of a work, in XML form.

• ArticleFiles.ROLE_ABSTRACT: a URL for a work's abstract.

• ArticleFiles.ROLE_REFERENCES: a URL for a work's list of works cited.

• ArticleFiles.ROLE_FIGURES: a URL for a landing page of the work's figures and illustrations.

• ArticleFiles.ROLE_TABLES: a URL for a landing page of the work's tables.

• ArticleFiles.ROLE_SUPPLEMENTARY_MATERIALS: a URL for a landing page of the work's supplementary
materials.

• ArticleFiles.ROLE_CITATION: a URL for a landing page for the work's citation files.

• ArticleFiles.ROLE_CITATION_BIBTEX: a URL for a BibTeX citation file for the work.

• ArticleFiles.ROLE_CITATION_ENDNOTE: a URL for an EndNote citation file for the work.

• ArticleFiles.ROLE_CITATION_RIS: a URL for a RIS citation file for the work.

• ArticleFiles.ARTICLE_METADATA: a URL from which metadata for the work can be found.

In addition to the mapping from roles to URL, one URL has a special status in the ArticleFiles instance as the
designated, "best" full text URL for the work. It is referred to as the full text URL or full text CU (for CachedUrl) of
the article, and is set via the setFullTextCu(...) method. In plugins written by the LOCKSS Program, for articles
with multiple full text representations, HTML is favored above all, then PDF, then EPUB, and lastly XML (in subjective
order of richness of rendering experience in a Web browser).

SubTreeArticleIterator

The org.lockss.plugin.SubTreeArticleIterator class implements Iterator<ArticleFiles> and can be
returned by an article iterator factory. It traverses an AU's URLs, restricting them in various ways according to a
specification. These restrictions include considering only certain subdirectory trees (hence the name), applying regular
expressions, selecting a media type, or applying a custom condition.

The SubTreeArticleIterator.Spec class contains the specification:

• The specification identifies root URLs, limiting which AU URLs are enumerated to those under these root
URLs only. This restriction applies to the directory structure, not the URL strings -- in effect, root URLs
end with a slash. Root URLs can be specified directly with setRoot(...) or setRoots(...), or via
printf templates (which expand to URLs) expressed as single Java strings with setRootTemplate(...) or
setRootTemplates(...). The printf templates are expressed as single Java strings, which can be tricky
to read, for example: "\"%s%s/%d/\", base_url, journal_id, year" (with the convention that the base
URL value ends with a slash). If the specification specifies no root URL, all URLs in the AU are enumerated.

1 Technically a mapping from roles to arbitrary Java objects.
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• The specification can optionally have an include pattern or an exclude pattern. With an include pat-
tern, URLs below each root URL that match the include pattern are considered (but others are ig-
nored). With an exclude pattern, URLs below each root URL that match the exclude pattern are ig-
nored (but others are considered). No error will happen if both are specified, but the exclude pat-
tern will be ignored in favor of the include pattern. These patterns (regular expressions) can be
specified directly with setIncludeSubTreePattern(...) or setExcludeSubTreePattern(...), or
via printf templates (which expand to regular expressions) expressed as single Java strings with
setIncludeSubTreePatternTemplate(...) or setExcludeSubTreePatternTemplate(...).

• The specification can optionally have a general pattern, which is a regular expression applied to any URL still
under consideration. It can be specified directly with setPattern(...), or via a printf template (which
expands to a regular expression) expressed as a single Java string with setPatternTemplate(...).

• The specification can have an optional media type (for example text/html), and only URLs under consideration
that have this media type will be enumerated. There is currently no way to specify multiple media types, which
can be problematic for media types with multiple common representations, like text/xml and application/
xml. The class could be enhanced in the future to allow multiple media types.

The logic for which URLs are enumerated is found in the isArticleCu(...) method, which can be customized in a
subclass.

By default, for each successful URL, this iterator makes one ArticleFiles instance that has its designated full text
URL set, and no roles set. This behavior can be customized in visitArticleCu(...) and createArticleFiles(.
..) in a subclass.

SubTreeArticleIteratorBuilder

The org.lockss.plugin.SubTreeArticleIteratorBuilder class assists in the creation of a
SubTreeArticleIterator instance under circumstances where the URLs of various aspects of an article (for
example its abstract URL, its full text HTML URL, its full text PDF URL, etc.) can all be derived from one another
through mutually compatible regular expressions and replacement strings.

An example of such mutual compatibility would be a journal where articles have full text HTML URLs that look
like this: http://www.example.com/vol12/iss3/art45 and full text PDF URLs that look like this: http://
www.example.com/pdf/article_12_3_45.pdf (assuming these URLs represent volume 12, issue 3, page 45). A
regular expression for the full text HTML URLs (expressed as a Java string) could be "/vol(\\d+)/iss(\\d+)/
art(\\d+)$", and the replacement string "/pdf/article_$1_$2_$3.pdf" would yield the corresponding full text
PDF URL from a match; likewise a regular expressin for the full text PDF URL could be "/pdf/article_(\\d+)_(\
\d+)_(\\d+)\\.pdf$", and the replacement string "/vol$1/iss$2/art$3"would yield the corresponding full text
HTML URL from a match.

The SubTreeArticleIteratorBuilder class has convenience methods to:

• Create a SubTreeArticleIterator.Spec specification. See setSpec(...), or use newSpec() to manipu-
late an empty Spec from scratch.

• Define major aspects with one or more regular expressions matching the aspect's URLs, one or more replacement
strings yielding the aspect's URLs from matchers for URLs of other major aspects, and one or more roles for the
aspect.

• Define minor aspects with one or more replacement strings yielding the aspect's URLs from matchers for URLs
of major aspects, and one or more roles for the aspect.

The key differences between major and minor aspects are:

• URLs enumerated by the SubTreeArticleIterator are tried against the regular expressions of the major
aspects only.

• The earliest URL for a major aspect to match for a given article is also designated as the article's full text CU.
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All aspects are defined with the variants of the addAspect(...) method and associated methods.

When an ArticleFiles is complete, methods like setRoleFromOtherRoles(...) and
setFullTextFromRoles(...) can be used to designate additional roles or the full text CU from the value
associated with an ordered list of possibilities from other roles.

The getSubTreeArticleIterator() method can finally be used to obtain a SubTreeArticleIterator instance
behaving in the specified manner.

6.7.3 File Metadata Extractor

Plugin Key
mediatype>_metadata_extractor_factory_map, where mediatype is a media type like text/html

Plugin Value Type
Map from String to String

Plugin Value Type
The values are the fully-qualified name of a Java class implementing the org.lockss.extractor.
FileMetadataExtractorFactory interface.

Sample

<entry>
<string>text/html_metadata_extractor_factory_map</string>
<map>
<entry>
<string>*</string>
<string>edu.example.plugin.publisherx.PublisherXHtmlMetadataExtractorFactory</

→˓string>
</entry>

</map>
</entry>

If the media type is represented under multiple guises in the plugin's AUs, for example XML represented as both
text/xml and application/xml, you will need multiple entries in the plugin.

Description
File metadata extractors are part of the metadata extraction pipeline. Their function is to parse the contents of
a particular URL based on its media type and file format, and emit any number of ArticleMetadata metadata
records, and they are invoked as part of the execution of an Article Metadata Extractor.

SimpleFileMetadataExtractor

The org.lockss.extractor.SimpleFileMetadataExtractor utility class is used as a base class for the common
case where a file metadata extractor produces a single metadata record (or null), rather than an arbitrary number of
metadata records. It defines one abstract method:

public abstract ArticleMetadata extract(MetadataTarget target,
CachedUrl cu)

throws IOException, PluginException;
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and its extract(MetadataTarget target, CachedUrl cu, Emitter emitter) method simply calls
extract(MetadataTarget target, CachedUrl cu) and emits the returned ArticleMetadata if it is not
null.

Utility classes based on SimpleFileMetadataExtractor include JsoupTagExtractor and
RisMetadataExtractor.

JsoupTagExtractor

The org.lockss.extractor.JsoupTagExtractor utility class can be used to build HTML or XML file metadata
extractors that use the jsoup parser.

By default, it maps the value of the name attribute of HTML <meta> tags to the value of their content attribute in the
ArticleMetadata object's raw multi-map.

However if the media type is text/xml, application/xml or application/xhtml+xml, or if the extractor is created
with selector strings, for each selector string, and for each element matched by the selector string, it maps the selector
string to the selector value in the raw multi-map. The selector strings are those understood by the select(...)method
of jsoup's Document class.

Subclasses provide the recipe multi-map (cook map) to process raw data into metadata.

Note: The org.lockss.extractor.JsoupXmlTagExtractor class exists but its functionality has been absorbed
into org.lockss.extractor.JsoupTagExtractor, which is capable of handling HTML without selector strings
as well as HTML and XML with selector strings. It may be removed in a future version of the LOCKSS system and
should not be used for new plugin implementations -- use JsoupTagExtractor instead.

The org.lockss.extractor.SimpleHtmlMetaTagMetadataExtractor class also exists and scrapes HTML
<meta> tags using a regular expression-based approach. It is at risk of being deprecated in a future version of the
LOCKSS system, and is not recommended for new plugin implementations -- use JsoupTagExtractor instead.

RisMetadataExtractor

The org.lockss.extractor.RisMetadataExtractor utility class parses RIS metadata files (media type
application/x-research-info-systems).

By default, it maps RIS tags to their values in the ArticleMetadata object's raw multi-map, and its recipe map (cook
map) maps the following raw keys (RIS tags) to the following MetadataField instances:

• T1 to the article title (MetadataField.FIELD_ARTICLE_TITLE)

• AU to an author (MetadataField.FIELD_AUTHOR)

• JF tp the journal title (MetadataField.FIELD_PUBLICATION_TITLE)

• DO to the DOI (MetadataField.FIELD_DOI)

• PB to the publisher name (MetadataField.FIELD_PUBLISHER)

• VL to the journal volume (MetadataField.FIELD_VOLUME)

• IS to the journal issue (MetadataField.FIELD_ISSUE)

• SP to the start page (MetadataField.FIELD_START_PAGE)

• EP to the end page (MetadataField.FIELD_END_PAGE)

• DA to the publication date (MetadataField.FIELD_DATE)
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• SN to the ISSN (MetadataField.FIELD_ISSN) for a journal (TY tag equal to JOUR) or ISBN (MetadataField.
FIELD_ISBN) for a book (TY tag equal to BOOK, CHAP, EBOOK, ECHAP, EDBOOK)

but the behavior is customizable.

SourceXmlMetadataExtractor

Because the LOCKSS Program processes large amounts of bulk content on behalf of the CLOCKSS Archive, which is
often in the form of bundles of content with multi-article metadata in XML (for example JATS format), there are utility
classes in the org.lockss.plugin.clockss package of the plugins tree of the lockss-daemon project to generalize
this kind of data processing.

Plugins can only reference classes found in the plugin JAR itself, in lockss-core and in its dependencies (if using the
re-architected LOCKSS system), or in the main tree of lockss-daemon and in its dependencies (if using the classic
LOCKSS system), so these classes in the plugins tree of lockss-daemon are not directly accessible to arbitrary plugins
(without some manipulation, like injecting additional classes in plugin JARs). However there is growing interest in
re-using these utility classes in the broader LOCKSS community, so some of these classes will be "promoted" to
lockss-core so they can be used by third-party plugins in a future version of the LOCKSS system.

The org.lockss.plugin.clockss.SourceXmlMetadataExtractorFactory, org.lockss.plugin.clockss.
SourceXmlMetadataExtractorFactory.SourceXmlMetadataExtractor and org.lockss.plugin.clockss.
SourceXmlSchemaHelper classes define a framework for processing XML metadata in some format, and mapping
from XPath expressions to text values in the ArticleMetadata object's raw multi-map. The format-specific logic is
confined in the SourceXmlSchemaHelper object.

The SourceXmlSchemaHelper class consists of a global map and an article map. Both map XPath strings to the
corresponding values. The article map, aided by the getArticleNode() method which gives an XPath for the top-
level node of each article in the XML file, is used to designate XPaths for each emitted article from the file. The optional
global map is used to designate XPaths that apply to all emitted articles from the file, and can be used for XML formats
that hoist some data above the level of each article (for instance publication-level or issue-level data).

This framework also offers some features to perform deduplication or recombination, verify some URLs or file paths,
and SourceXmlSchemaHelper's getCookMap() method provides the recipe multi-map to produce metadata from the
raw multi-map.

There is also an effort underway to define an equivalent framework for similarly structured metadata in JSON, using
the Jayway JsonPath library.

6.7.4 Article Metadata Extractor

Plugin Key
plugin_article_metadata_extractor_factory

Plugin Value Type
String

Plugin Value Type
The string is the fully-qualified name of a Java class implementing the org.lockss.extractor.
ArticleMetadataExtractorFactory interface.

Sample

<entry>
<string>plugin_article_metadata_extractor_factory</string>
<string>edu.example.plugin.publisherx.PublisherXArticleMetadataExtractorFactory</

→˓string>
</entry>
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Description
The article metadata extractor is part of the metadata extraction pipeline. Its function is to process each article
(where "article" is meant as "item" or "object") in the archival unit (AU) and emit any number of metadata records
from it. Each metadata record is represented by an ArticleMetadata instance. The article metadata extractor
is aided in its task by file metadata extractors.

ArticleMetadata

An org.lockss.extractor.ArticleMetadata object contains two multi-maps (one-to-many mappings, using the
Apache Commons Collections org.apache.commons.collections4.map.MultiValueMap` class internally): a raw multi-
map, and a metadata multi-map often called the cooked multi-map by analogy. The raw multi-map is for general-
purpose storage of data extracted from content, where the keys are arbitrary strings, and the multiple values are either
strings or maps from string to string. The cooked multi-map is the final representation of the metadata information
contained in the object, where the keys are MetadataField instances, and the multiple values are strings.

org.lockss.extractor.MetadataField objects represent not only the key of a metadata field but also its cardinal-
ity (single or multiple) and a validator. Many are built into the MetadataField class itself, including single cardinality
fields for journal volume, issue, start page and end page; single cardinality fields for DOI, ISSN, eISSN, ISBN that ac-
cept a string potentially prefixed with doi:, issn:, eissn: and isbn: (as is often found on publisher websites); multiple
cardinality fields for authors; etc.

The plugin-dependent way to populate the cooked multi-map from the raw multi-map is given by a recipe multi-
map sometimes confusingly referred to as the cook map, which maps raw keys (string) to one or more cooked keys
(MetadataField). For each raw key-cooked key pair, each raw multi-value corresponding to the raw key is validated
and stored by the cooked field into a cooked multi-value.

BaseArticleMetadataExtractor

Most plugins do not implement arbitrary logic in the article metadata extractor, but simply use the org.lockss.
extractor.BaseArticleMetadataExtractor class.

This utility article metadata extractor is parameterized with a single target ArticleFiles role, parses the URL in
the ArticleFiles that has the target role using the appropriate file metadata extractor for its media type, and post-
processes each emitted ArticleMetadata object by adding bibliographic metadata drawn from the AU's listing in the
title database (AU inventory) if such data is not extracted from the content already.

The logic for what gets post-processed from the title database into the ArticleMetadata instance is in the
addTdbDefaults(...) method, which can be overridden to customize. If the AU is not labeled as bulk content
(disparate content from many sources), the publication type, series name, ISSN, eISSN, ISBN, eISBN, publication
name, volume, issue, and publication date are set from the corresponding value in the title database, if available and if
not already set from the actual metadata extraction.

Additionally, the checkAccessUrl(...) method ensures that the URL set under the MetadataField.
FIELD_ACCESS_URL metadata key for the article is actually in the AU, and if not, it is reset to the full text URL
for the article.

The implementation of ArticleMetadataExtractorFactory is often simply to return a new
BaseArticleMetadataExtractor for a given target role (usually ArticleFiles.ARTICLE_METADATA), with no
further code:

@Override
public ArticleMetadataExtractor createArticleMetadataExtractor(MetadataTarget target)

throws PluginException {
return new BaseArticleMetadataExtractor(ArticleFiles.ROLE_ARTICLE_METADATA);

}
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Because of this, many plugins do not define a separate Java class for the article metadata extractor factory but simply
let their article iterator factory also implement ArticleMetadataExtractorFactory:

public class PublisherXArticleIteratorFactory
implements ArticleIteratorFactory, ArticleMetadataExtractorFactory {

@Override
public Iterator<ArticleFiles> createArticleIterator(ArchivalUnit au,

MetadataTarget target)
throws PluginException {

// ...
}

@Override
public ArticleMetadataExtractor createArticleMetadataExtractor(MetadataTarget target)

throws PluginException {
return new BaseArticleMetadataExtractor(ArticleFiles.ROLE_ARTICLE_METADATA);

}

}

6.8 Web Replay

This section introduces plugin features related to supporting the replay of Web content.

6.8.1 Link Rewriter

Note: This page is under construction.

Plugin Key
mediatype_link_rewriter_factory, where mediatype is a media type like text/html

Plugin Value Type
String

Plugin Value Type
The value is the fully qualified name of a Java class implementing the org.lockss.extractor.
LinkRewriterFactory interface.

Sample

<entry>
<string>text/html_link_rewriter_factory</string>
<string>edu.example.plugin.publisherx.PublisherXHtmlLinkRewriterFactory</string>

</entry>

Description
When content is replayed through the LOCKSS system's ServeContent Web replay engine, links have to be
rewritten so that they point to other ServeContent URLs where applicable. ServeContent contains logic to handle
typical cases in HTML and CSS, but some specific use cases may require additional or custom link rewriting.
To accomplish this, the plugin defines link rewriters for the affected media types.
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For example, a Web site could have image tags for journal article figures that look like this: <img
src="fig1_small.jpg" data-target="fig1_large.jpg" />, and Javascript code in the page such that
when the small version of the image is clicked, an image viewer widget is displayed with the large version of
the image instead. ServeContent has internal logic that knows to look for the src attribute of <img> tags, but
would not know to also process this non-standard data-target attribute so the image viewer widget works
with a preserved copy of the large version of the image. Depending on the situation, this might require a custom
rewriter for just HTML, or for HTML plus Javascript.

6.8.2 Rewrite HTML Meta URLs

Note: This page is under construction.

Plugin Key
plugin_rewrite_html_meta_urls

Plugin Value Type
List of String

Plugin Value Type
Each string in the list is a value of the name attribute of HTML <meta> tags.

Sample

<entry>
<string>plugin_rewrite_html_meta_urls</string>
<list>
<string>citation_abstract_url</string>
<string>citation_pdf_url</string>

</list>
</entry>

Description
This plugin feature enables a canned HTML Link Rewriter that seeks out <meta name="..." content="...
"> tags where the value of the name attribute matches one of the specified names, and rewrites the URL that is
the value of their content attribute.

6.9 Inheritance

This section introduces plugin features related to sharing similar behavior among a set of plugins.

6.9.1 Parent Plugin

Plugin Key
plugin_parent

Plugin Value Type
String

Plugin Value Format
The value is the Plugin Identifier of this plugin's parent.

Sample
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<entry>
<string>plugin_parent</string>
<string>edu.example.plugin.platformx.PlatformXPlugin</string>

</entry>

Description
Declares that this plugin uses the specified plugin as its parent. This plugin inherits the key-value pairs from the
parent plugin, and additionally adds values for keys not found in the parent or redefines the value for a key found
in the parent.

If the parent plugin maps a key to a specific value and this plugin wishes to undo the effect and simply use
whatever the default is for the key in the system, this plugin can map the key to the special value <org.lockss.
util.Default />.

6.9.2 Parent Plugin Version

Plugin Key
plugin_parent_version

Plugin Value Type
String, not integer

Plugin Value Format
The value is the Parent Plugin's Plugin Version.

Sample

<entry>
<string>plugin_parent_version</string>
<string>2</string>

</entry>

Description
Declares the intended version of this plugin's Parent Plugin.

6.10 Appendix

This appendix gives a brief overview of printf Format Strings and Regular Expressions.

6.10.1 printf Format Strings

Note: This page is under construction.

A printf format string is a template for generating a string of text from variable parts. It consists of a format specifi-
cation containing literal elements and format specifiers (placeholders with formatting hints), and a list of expressions
for each placeholder's value.

A printf interpreter is a template engine that accepts a printf format string as input and produces an output string
from it, based on its implementation-dependent capabilities to compute the value of expressions and on context-
dependent variables.
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The LOCKSS software contains a printf interpreter where the expressions are names of Plugin Configuration Pa-
rameters and AU attributes, optionally modified by a small number of processing functions.

printf Format String Format

A printf format specification starts and ends with a quotation mark (") and follows the printf specification syntax.

For each format specifier in the format specification, the value of an expression is computed and substituted for the
format specifier. The successive expressions correspond to the format specifiers in the order they appear in the format
specification.

The format specification and the expressions are comma-separated, with whitespace surrounding the elements trimmed.

Anything that is not recognized as a format specifier is interepreted to be a literal part of the output string.

printf Format Specifiers

Format specifiers begin with a percent sign (%) and end with a type field, separated by optional characters further
constraining the formatting of the placeholder's value. The most important type fields are:

• %s: for string-valued expressions.

• %d: for integer-valued expressions.

• %% for a literal percent sign.

String

The most common format specifier is %s for string-valued expressions. Example:

Input:

"The base URL is %s", base_url

Output in a context where base_url is http://www.example.com/:

The base URL is http://www.example.com/

Integer

The format specifier %d is used for an integer-valued expression. Example:

Input:

"The year is %d", year

Output in a context where year is the integer 2022:

The year is 2022
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Percent Sign

Because the percent sign is used to introduce format specifiers, there is type field to indicate that a placeholder is for a
literal percent sign, and that type field is also the percent sign. Examples:

Input:

"100%% of the time"

Output:

100% of the time

Input:

"100% of the time"

Output: error

References

• printf format string on Wikipedia

6.10.2 Regular Expressions

Note: This page is under construction.

A regular expression is a character string that specifies a text search pattern. The search pattern can then be applied
to an input string. If a portion of the input string matches the search pattern, the matching portions or designated
subparts of it can be extracted.

A regular expression engine is a software library capable of applying search patterns specified in an implementation-
dependent regular expression language to arbitrary input strings.

The LOCKSS software uses the Java regular expression engine, but because Java did not always have built-in regular
expression support, in some contexts the LOCKSS software uses the older Apache ORO regular expression engine.
Typical use of regular expressions in LOCKSS plugins should not result in noticeable differences between the two
engines' capabilities.

References

• Regular expression on Wikipedia
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CHAPTER

SEVEN

LOCKSS SOFTWARE DEVELOPER GUIDE

Note: The LOCKSS Software Developer Guide is under construction.

7.1 Classic LOCKSS Development

Note: This page is under construction.

The code base of the Classic LOCKSS system (version 1.x) is contained in a single Git repository, https://github.com/
lockss/lockss-daemon.

7.1.1 Prerequisites

To do development work with the Classic LOCKSS system (version 1.x), you will need:

• Git

• Java 8 Development Kit (JDK 8), for example OpenJDK 8

• Apache Ant

• Python 3, invoked as python3

• Some scripts require Python 2.7, invoked as python2

• Some runtime contexts that process split Zip files and some unit tests require the zip program (zip and unzip
are installed by default on most Linux systems).

Installing Git

You can check if Git is installed on your system by typing git --version at the command line and seeing if you get
a valid response. If you need to install Git, select your operating system below and follow the instructions (as root,
except for Homebrew on MacOS):

81

https://github.com/lockss/lockss-daemon
https://github.com/lockss/lockss-daemon
https://git-scm.com/
https://openjdk.org/
https://ant.apache.org/
https://www.python.org/
https://www.python.org/


LOCKSS Documentation Portal

AlmaLinux OS

To install Git, run this Dnf command (as root):

dnf --assumeyes install git

Arch Linux

To install Git, run this Pacman command (as root):

pacman -Sy --noconfirm git

CentOS

CentOS Stream 8-9

To install Git, run this Dnf command (as root):

dnf --assumeyes install git

CentOS 8

To install Git, run this Dnf command (as root):

dnf --assumeyes install git

CentOS 7

To install Git, run this Yum command (as root):

yum --assumeyes install git

Debian

To install Git, run these Apt commands (as root):

apt update

apt install --assume-yes git
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EuroLinux

EuroLinux 8-9

To install Git, run this Dnf command (as root):

dnf --assumeyes install git

EuroLinux 7

To install Git, run this Yum command (as root):

yum --assumeyes install git

Fedora Linux

To install Git, run this Dnf command (as root):

dnf --assumeyes install git

Linux Mint

To install Git, run these Apt commands (as root):

apt update

apt install --assume-yes git

MacOS

Homebrew

To install Git, run this Homebrew command:

brew install git

MacPorts

To install Git, run this MacPorts command (as root):

sudo port install git
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OpenSUSE

OpenSUSE Leap 15

To install Git, run these Zypper commands (as root):

zypper refresh

zypper --non-interactive install git

OpenSUSE Tumbleweed

To install Git, run these Zypper commands (as root):

zypper refresh

zypper --non-interactive install git

Oracle Linux

Oracle Linux 8-9

To install Git, run this Dnf command (as root):

dnf --assumeyes install git

Oracle Linux 7

To install Git, run this Yum command (as root):

yum --assumeyes install git

RHEL

RHEL 7

To install Git, run this Yum command (as root):

yum --assumeyes install git
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RHEL 8-9

To install Git, run this Dnf command (as root):

dnf --assumeyes install git

Rocky Linux

To install Git, run this Dnf command (as root):

dnf --assumeyes install git

Scientific Linux

To install Git, run this Yum command (as root):

yum --assumeyes install git

Ubuntu

To install Git, run these Apt commands (as root):

apt update

apt install --assume-yes git

Installing the Java Development Kit

1. You can check if a Java Development Kit (JDK) is installed on your system by typing javac -version at the
command line and seeing if you get a valid response. (The version numbers output by Java 8 software sometimes
use the notation 1.8, for example 1.8.0_382.)

If you need to install a JDK, we recommend OpenJDK; select your operating system below and follow the in-
structions (as root, except for Homebrew on MacOS):

AlmaLinux OS

To install OpenJDK, run this Dnf command (as root):

dnf --assumeyes install java-1.8.0-openjdk-devel
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Arch Linux

To install OpenJDK, run this Pacman command (as root):

pacman -Sy --noconfirm jdk8-openjdk

CentOS

CentOS Stream 8-9

To install OpenJDK, run this Dnf command (as root):

dnf --assumeyes install java-1.8.0-openjdk-devel

CentOS 8

To install OpenJDK, run this Dnf command (as root):

dnf --assumeyes install java-1.8.0-openjdk-devel

CentOS 7

To install OpenJDK, run this Yum command (as root):

yum --assumeyes install java-1.8.0-openjdk-devel

Debian

To install OpenJDK, run these Apt commands (as root):

apt update

apt install --assume-yes openjdk-8-jdk

EuroLinux

EuroLinux 8-9

To install OpenJDK, run this Dnf command (as root):

dnf --assumeyes install java-1.8.0-openjdk-devel
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EuroLinux 7

To install OpenJDK, run this Yum command (as root):

yum --assumeyes install java-1.8.0-openjdk-devel

Fedora Linux

To install OpenJDK, run this Dnf command (as root):

dnf --assumeyes install java-1.8.0-openjdk-devel

Linux Mint

To install OpenJDK, run these Apt commands (as root):

apt update

apt install --assume-yes openjdk-8-jdk

MacOS

Homebrew

To install OpenJDK, run this Homebrew command:

brew install openjdk@8

Note: You may be directed to create symlinks and/or update your PATH to make OpenJDK visible to your
system, for instance:

For the system Java wrappers to find this JDK, symlink it with
sudo ln -sfn /usr/local/opt/openjdk@8/libexec/openjdk.jdk /Library/Java/

→˓JavaVirtualMachines/openjdk-8.jdk

openjdk@8 is keg-only, which means it was not symlinked into /usr/local,
because this is an alternate version of another formula.

If you need to have openjdk@8 first in your PATH, run:
echo 'export PATH="/usr/local/opt/openjdk@8/bin:$PATH"' >> ~/.zshrc

For compilers to find openjdk@8 you may need to set:
export CPPFLAGS="-I/usr/local/opt/openjdk@8/include"
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MacPorts

To install OPenJDK, run this MacPorts command (as root):

sudo port install openjdk

OpenSUSE

OpenSUSE Leap 15

To install OpenJDK, run these Zypper commands (as root):

zypper refresh

zypper --non-interactive install java-1_8_0-openjdk-devel

OpenSUSE Tumbleweed

To install OpenJDK, run these Zypper commands (as root):

zypper refresh

zypper --non-interactive install java-1_8_0-openjdk-devel

Oracle Linux

Oracle Linux 8-9

To install OpenJDK, run this Dnf command (as root):

dnf --assumeyes install java-1.8.0-openjdk-devel

Oracle Linux 7

To install OpenJDK, run this Yum command (as root):

yum --assumeyes install java-1.8.0-openjdk-devel

RHEL

RHEL 8-9

To install OpenJDK, run this Dnf command (as root):

dnf --assumeyes install java-1.8.0-openjdk-devel
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RHEL 7

To install OpenJDK, run this Yum command (as root):

yum --assumeyes install java-1.8.0-openjdk-devel

Rocky Linux

To install OpenJDK, run this Dnf command (as root):

dnf --assumeyes install java-1.8.0-openjdk-devel

Scientific Linux

To install OpenJDK, run this Yum command (as root):

yum --assumeyes install java-1.8.0-openjdk-devel

Ubuntu

To install OpenJDK, run these Apt commands (as root):

apt update

apt install --assume-yes openjdk-8-jdk

2. Set the JAVA_HOME environment variable to the directory in which the JDK is installed, for example /usr/lib/
jvm/java-8-openjdk or similar for Linux or /usr/local/opt/openjdk@8/libexec/openjdk.jdk/Home
for MacOS with Homebrew. It is expected that the file $JAVA_HOME/lib/tools.jar exists.

Installing Apache Ant

You can check if Ant is installed on your system by typing ant -version at the command line and seeing if you get
a valid response. If you need to install Ant, select your operating system below and follow the instructions (as root,
except for Homebrew on MacOS):

AlmaLinux OS

To install Ant, run this Dnf command (as root):

dnf --assumeyes install ant
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Arch Linux

To install Ant, run this Pacman command (as root):

pacman -Sy --noconfirm ant

CentOS

CentOS Stream 8-9

To install Ant, run this Dnf command (as root):

dnf --assumeyes install ant

CentOS 8

To install Ant, run this Dnf command (as root):

dnf --assumeyes install ant

CentOS 7

To install Ant, run this Yum command (as root):

yum --assumeyes install ant

Debian

To install Ant, run these Apt commands (as root):

apt update

apt install --assume-yes ant

EuroLinux

EuroLinux 8-9

To install Ant, run this Dnf command (as root):

dnf --assumeyes install ant

90 Chapter 7. LOCKSS Software Developer Guide



LOCKSS Documentation Portal

EuroLinux 7

To install Ant, run this Yum command (as root):

yum --assumeyes install ant

Fedora Linux

To install Ant, run this Dnf command (as root):

dnf --assumeyes install ant

Linux Mint

To install Ant, run these Apt commands (as root):

apt update

apt install --assume-yes ant

MacOS

Homebrew

To install Ant, run this Homebrew command:

brew install ant

MacPorts

To install Ant, run this MacPorts command (as root):

sudo port install apache-ant

OpenSUSE

OpenSUSE Leap 15

To install Ant, run these Zypper commands (as root):

zypper refresh

zypper --non-interactive install ant
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OpenSUSE Tumbleweed

To install Ant, run these Zypper commands (as root):

zypper refresh

zypper --non-interactive install ant

Oracle Linux

Oracle Linux 8-9

To install Ant, run this Dnf command (as root):

dnf --assumeyes install ant

Oracle Linux 7

To install Ant, run this Yum command (as root):

yum --assumeyes install ant

RHEL

RHEL 8-9

To install Ant, run this Dnf command (as root):

dnf --assumeyes install ant

RHEL 7

To install Ant, run this Yum command (as root):

yum --assumeyes install ant

Rocky Linux

To install Ant, run this Dnf command (as root):

dnf --assumeyes install ant
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Scientific Linux

To install Ant, run this Yum command (as root):

yum --assumeyes install ant

Ubuntu

To install Ant, run these Apt commands (as root):

apt update

apt install --assume-yes ant

Cloning the Git Repository

To clone the lockss-daemon repository from Git, use one of these commands:

# GitHub account with SSH key
git clone git@github.com:lockss/lockss-daemon

# Anonymous access
git clone https://github.com/lockss/lockss-daemon

This will create a lockss-daemon directory.

JUnit Prerequisites

JUnit 3.8.1 is included is included in the LOCKSS source distribution to run unit tests, but the Ant targets that invoke
JUnit (test-xxx) require the JUnit JAR to be on Ant's CLASSPATH. The easiest way to do this is to copy lib/junit.
jar (relative to the root of the lockss-daemon Git tree) into Ant's lib directory (relative to its installation directory
on the system).

7.1.2 Tour of lockss-daemon

The main components of the lockss-daemon repository are as follows:

• build.xml is the Ant build file. Type ant -projecthelp (or ant -p) will output a list of available build
targets. The lib directory contains Java (JAR) dependencies for the project at large.

• The src tree contains the source code of the LOCKSS system proper, and test/src its unit tests. The ant/src
tree contains the source code for an ancillary prerequisite.

• The plugins/src tree contains the source code of plugins written by the LOCKSS Program to support the
preservation activities of LOCKSS networks such as the Global LOCKSS Network (GLN) and the CLOCKSS
Archive, and plugins/test/src the unit tests.

• The tools/src tree contains the source code of ancillary tools sometimes used in the context of LOCKSS
development, and tools/test/src the unit tests.

• The tdb directory contains the archival unit (AU) inventory of content managed by the LOCKSS Program on
behalf of various LOCKSS networks such as the GLN and CLOCKSS.
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• The scripts and test/scripts directories contains scripts and tools used for TDB file processing, SOAP
Web services, and more.

• The test/frameworks tree contains multiple testing frameworks, to bring up one or more instance of the (clas-
sic) LOCKSS system on the local machine for testing or development purposes.

7.2 License Templates

Unless otherwise noted, software released by the LOCKSS Program is made available under the terms of the 3-Clause
BSD License, a permissive open-source license1. You can use the templates below to add the license to files of various
kinds:

• Bash: see Shell

• Dockerfile: see Shell

• HTML: see XML

• Java

• Plain Text

• Python

• Shell

• XML

• YAML: see Shell

7.2.1 Plain Text

The following template can be used in plain text contexts, for example the LICENSE file at the top of a Git repository.

Copyright (c) 2000-2024, Board of Trustees of Leland Stanford Jr. University

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE

(continues on next page)

1 See also the Software License page on the LOCKSS Web site.
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(continued from previous page)

LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

7.2.2 Java

The following template can be used for Java files.

/*

Copyright (c) 2000-2024, Board of Trustees of Leland Stanford Jr. University

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

*/
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7.2.3 Python

The following template can be used for Python files.

__copyright__ = '''\
Copyright (c) 2000-2024, Board of Trustees of Leland Stanford Jr. University
'''

__license__ = '''\
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
'''

7.2.4 Shell

The following template can be used for Shell files.

Tip: This also works for Bash files, Dockerfile files, Python requirements files, or YAML files.

# Copyright (c) 2000-2024, Board of Trustees of Leland Stanford Jr. University
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,

(continues on next page)
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# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its contributors
# may be used to endorse or promote products derived from this software without
# specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.

7.2.5 XML

The following template can be used for XML files.

Tip: This also works for HTML files.

<!--

Copyright (c) 2000-2024, Board of Trustees of Leland Stanford Jr. University

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

(continues on next page)
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SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

-->

7.3 REST APIs

The API of each LOCKSS REST service is described in a Swagger 2.0 specification, which can be found relative to the
root of the component's Git repository in the file src/main/resources/swagger/swagger.yaml. The specification
can be used as input into another tool, to produce clients and server stubs in a variety of languages and frameworks,
and documentation. This guide contains HTML renderings of each specification generated with Swagger Codegen.
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